Merge branch 'HKUDS:main' into feature-implementation
This commit is contained in:
@@ -26,7 +26,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
## 🎉 News
|
## 🎉 News
|
||||||
- [x] [2025.01.13]🎯📢Our team has launched [MiniRAG](https://github.com/HKUDS/MiniRAG) for small models.
|
- [x] [2025.01.13]🎯📢Our team has released [MiniRAG](https://github.com/HKUDS/MiniRAG) making RAG simpler with small models.
|
||||||
- [x] [2025.01.06]🎯📢You can now [use PostgreSQL for Storage](#using-postgresql-for-storage).
|
- [x] [2025.01.06]🎯📢You can now [use PostgreSQL for Storage](#using-postgresql-for-storage).
|
||||||
- [x] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
|
- [x] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
|
||||||
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
|
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
|
||||||
@@ -361,6 +361,7 @@ see test_neo4j.py for a working example.
|
|||||||
### Using PostgreSQL for Storage
|
### Using PostgreSQL for Storage
|
||||||
For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).
|
For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).
|
||||||
* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
|
* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
|
||||||
|
* If you prefer docker, please start with this image if you are a beginner to avoid hiccups (DO read the overview): https://hub.docker.com/r/shangor/postgres-for-rag
|
||||||
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
|
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
|
||||||
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
|
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
|
||||||
```
|
```
|
||||||
|
97
examples/copy_llm_cache_to_another_storage.py
Normal file
97
examples/copy_llm_cache_to_another_storage.py
Normal file
@@ -0,0 +1,97 @@
|
|||||||
|
"""
|
||||||
|
Sometimes you need to switch a storage solution, but you want to save LLM token and time.
|
||||||
|
This handy script helps you to copy the LLM caches from one storage solution to another.
|
||||||
|
(Not all the storage impl are supported)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
||||||
|
from lightrag.storage import JsonKVStorage
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||||||
|
WORKING_DIR = f"{ROOT_DIR}/dickens"
|
||||||
|
|
||||||
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
# AGE
|
||||||
|
os.environ["AGE_GRAPH_NAME"] = "chinese"
|
||||||
|
|
||||||
|
postgres_db = PostgreSQLDB(
|
||||||
|
config={
|
||||||
|
"host": "localhost",
|
||||||
|
"port": 15432,
|
||||||
|
"user": "rag",
|
||||||
|
"password": "rag",
|
||||||
|
"database": "r2",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def copy_from_postgres_to_json():
|
||||||
|
await postgres_db.initdb()
|
||||||
|
|
||||||
|
from_llm_response_cache = PGKVStorage(
|
||||||
|
namespace="llm_response_cache",
|
||||||
|
global_config={"embedding_batch_num": 6},
|
||||||
|
embedding_func=None,
|
||||||
|
db=postgres_db,
|
||||||
|
)
|
||||||
|
|
||||||
|
to_llm_response_cache = JsonKVStorage(
|
||||||
|
namespace="llm_response_cache",
|
||||||
|
global_config={"working_dir": WORKING_DIR},
|
||||||
|
embedding_func=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
kv = {}
|
||||||
|
for c_id in await from_llm_response_cache.all_keys():
|
||||||
|
print(f"Copying {c_id}")
|
||||||
|
workspace = c_id["workspace"]
|
||||||
|
mode = c_id["mode"]
|
||||||
|
_id = c_id["id"]
|
||||||
|
postgres_db.workspace = workspace
|
||||||
|
obj = await from_llm_response_cache.get_by_mode_and_id(mode, _id)
|
||||||
|
if mode not in kv:
|
||||||
|
kv[mode] = {}
|
||||||
|
kv[mode][_id] = obj[_id]
|
||||||
|
print(f"Object {obj}")
|
||||||
|
await to_llm_response_cache.upsert(kv)
|
||||||
|
await to_llm_response_cache.index_done_callback()
|
||||||
|
print("Mission accomplished!")
|
||||||
|
|
||||||
|
|
||||||
|
async def copy_from_json_to_postgres():
|
||||||
|
await postgres_db.initdb()
|
||||||
|
|
||||||
|
from_llm_response_cache = JsonKVStorage(
|
||||||
|
namespace="llm_response_cache",
|
||||||
|
global_config={"working_dir": WORKING_DIR},
|
||||||
|
embedding_func=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
to_llm_response_cache = PGKVStorage(
|
||||||
|
namespace="llm_response_cache",
|
||||||
|
global_config={"embedding_batch_num": 6},
|
||||||
|
embedding_func=None,
|
||||||
|
db=postgres_db,
|
||||||
|
)
|
||||||
|
|
||||||
|
for mode in await from_llm_response_cache.all_keys():
|
||||||
|
print(f"Copying {mode}")
|
||||||
|
caches = await from_llm_response_cache.get_by_id(mode)
|
||||||
|
for k, v in caches.items():
|
||||||
|
item = {mode: {k: v}}
|
||||||
|
print(f"\tCopying {item}")
|
||||||
|
await to_llm_response_cache.upsert(item)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(copy_from_json_to_postgres())
|
@@ -9,7 +9,7 @@ from lightrag.llm import openai_complete_if_cache, openai_embedding
|
|||||||
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
|
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
|
||||||
|
|
||||||
from lightrag.utils import EmbeddingFunc
|
from lightrag.utils import EmbeddingFunc
|
||||||
from typing import Optional, List
|
from typing import Optional, List, Union
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import shutil
|
import shutil
|
||||||
@@ -22,6 +22,7 @@ from fastapi.security import APIKeyHeader
|
|||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
|
||||||
from starlette.status import HTTP_403_FORBIDDEN
|
from starlette.status import HTTP_403_FORBIDDEN
|
||||||
|
import pipmaster as pm
|
||||||
|
|
||||||
|
|
||||||
def get_default_host(binding_type: str) -> str:
|
def get_default_host(binding_type: str) -> str:
|
||||||
@@ -174,7 +175,11 @@ def parse_args():
|
|||||||
class DocumentManager:
|
class DocumentManager:
|
||||||
"""Handles document operations and tracking"""
|
"""Handles document operations and tracking"""
|
||||||
|
|
||||||
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_dir: str,
|
||||||
|
supported_extensions: tuple = (".txt", ".md", ".pdf", ".docx", ".pptx"),
|
||||||
|
):
|
||||||
self.input_dir = Path(input_dir)
|
self.input_dir = Path(input_dir)
|
||||||
self.supported_extensions = supported_extensions
|
self.supported_extensions = supported_extensions
|
||||||
self.indexed_files = set()
|
self.indexed_files = set()
|
||||||
@@ -289,7 +294,7 @@ def create_app(args):
|
|||||||
+ "(With authentication)"
|
+ "(With authentication)"
|
||||||
if api_key
|
if api_key
|
||||||
else "",
|
else "",
|
||||||
version="1.0.1",
|
version="1.0.2",
|
||||||
openapi_tags=[{"name": "api"}],
|
openapi_tags=[{"name": "api"}],
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -356,6 +361,80 @@ def create_app(args):
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
async def index_file(file_path: Union[str, Path]) -> None:
|
||||||
|
"""Index all files inside the folder with support for multiple file formats
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file_path: Path to the file to be indexed (str or Path object)
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If file format is not supported
|
||||||
|
FileNotFoundError: If file doesn't exist
|
||||||
|
"""
|
||||||
|
if not pm.is_installed("aiofiles"):
|
||||||
|
pm.install("aiofiles")
|
||||||
|
|
||||||
|
# Convert to Path object if string
|
||||||
|
file_path = Path(file_path)
|
||||||
|
|
||||||
|
# Check if file exists
|
||||||
|
if not file_path.exists():
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
content = ""
|
||||||
|
# Get file extension in lowercase
|
||||||
|
ext = file_path.suffix.lower()
|
||||||
|
|
||||||
|
match ext:
|
||||||
|
case ".txt" | ".md":
|
||||||
|
# Text files handling
|
||||||
|
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
||||||
|
content = await f.read()
|
||||||
|
|
||||||
|
case ".pdf":
|
||||||
|
if not pm.is_installed("pypdf2"):
|
||||||
|
pm.install("pypdf2")
|
||||||
|
from pypdf2 import PdfReader
|
||||||
|
|
||||||
|
# PDF handling
|
||||||
|
reader = PdfReader(str(file_path))
|
||||||
|
content = ""
|
||||||
|
for page in reader.pages:
|
||||||
|
content += page.extract_text() + "\n"
|
||||||
|
|
||||||
|
case ".docx":
|
||||||
|
if not pm.is_installed("docx"):
|
||||||
|
pm.install("docx")
|
||||||
|
from docx import Document
|
||||||
|
|
||||||
|
# Word document handling
|
||||||
|
doc = Document(file_path)
|
||||||
|
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||||
|
|
||||||
|
case ".pptx":
|
||||||
|
if not pm.is_installed("pptx"):
|
||||||
|
pm.install("pptx")
|
||||||
|
from pptx import Presentation
|
||||||
|
|
||||||
|
# PowerPoint handling
|
||||||
|
prs = Presentation(file_path)
|
||||||
|
content = ""
|
||||||
|
for slide in prs.slides:
|
||||||
|
for shape in slide.shapes:
|
||||||
|
if hasattr(shape, "text"):
|
||||||
|
content += shape.text + "\n"
|
||||||
|
|
||||||
|
case _:
|
||||||
|
raise ValueError(f"Unsupported file format: {ext}")
|
||||||
|
|
||||||
|
# Insert content into RAG system
|
||||||
|
if content:
|
||||||
|
await rag.ainsert(content)
|
||||||
|
doc_manager.mark_as_indexed(file_path)
|
||||||
|
logging.info(f"Successfully indexed file: {file_path}")
|
||||||
|
else:
|
||||||
|
logging.warning(f"No content extracted from file: {file_path}")
|
||||||
|
|
||||||
@app.on_event("startup")
|
@app.on_event("startup")
|
||||||
async def startup_event():
|
async def startup_event():
|
||||||
"""Index all files in input directory during startup"""
|
"""Index all files in input directory during startup"""
|
||||||
@@ -363,13 +442,7 @@ def create_app(args):
|
|||||||
new_files = doc_manager.scan_directory()
|
new_files = doc_manager.scan_directory()
|
||||||
for file_path in new_files:
|
for file_path in new_files:
|
||||||
try:
|
try:
|
||||||
# Use async file reading
|
await index_file(file_path)
|
||||||
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
|
||||||
content = await f.read()
|
|
||||||
# Use the async version of insert directly
|
|
||||||
await rag.ainsert(content)
|
|
||||||
doc_manager.mark_as_indexed(file_path)
|
|
||||||
logging.info(f"Indexed file: {file_path}")
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
trace_exception(e)
|
trace_exception(e)
|
||||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||||
@@ -388,10 +461,7 @@ def create_app(args):
|
|||||||
|
|
||||||
for file_path in new_files:
|
for file_path in new_files:
|
||||||
try:
|
try:
|
||||||
with open(file_path, "r", encoding="utf-8") as f:
|
await index_file(file_path)
|
||||||
content = f.read()
|
|
||||||
await rag.ainsert(content)
|
|
||||||
doc_manager.mark_as_indexed(file_path)
|
|
||||||
indexed_count += 1
|
indexed_count += 1
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||||
@@ -419,10 +489,7 @@ def create_app(args):
|
|||||||
shutil.copyfileobj(file.file, buffer)
|
shutil.copyfileobj(file.file, buffer)
|
||||||
|
|
||||||
# Immediately index the uploaded file
|
# Immediately index the uploaded file
|
||||||
with open(file_path, "r", encoding="utf-8") as f:
|
await index_file(file_path)
|
||||||
content = f.read()
|
|
||||||
await rag.ainsert(content)
|
|
||||||
doc_manager.mark_as_indexed(file_path)
|
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"status": "success",
|
"status": "success",
|
||||||
@@ -498,26 +565,103 @@ def create_app(args):
|
|||||||
dependencies=[Depends(optional_api_key)],
|
dependencies=[Depends(optional_api_key)],
|
||||||
)
|
)
|
||||||
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
||||||
try:
|
"""Insert a file directly into the RAG system
|
||||||
content = await file.read()
|
|
||||||
|
|
||||||
if file.filename.endswith((".txt", ".md")):
|
Args:
|
||||||
text = content.decode("utf-8")
|
file: Uploaded file
|
||||||
await rag.ainsert(text)
|
description: Optional description of the file
|
||||||
else:
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: Status of the insertion operation
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: For unsupported file types or processing errors
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
content = ""
|
||||||
|
# Get file extension in lowercase
|
||||||
|
ext = Path(file.filename).suffix.lower()
|
||||||
|
|
||||||
|
match ext:
|
||||||
|
case ".txt" | ".md":
|
||||||
|
# Text files handling
|
||||||
|
text_content = await file.read()
|
||||||
|
content = text_content.decode("utf-8")
|
||||||
|
|
||||||
|
case ".pdf":
|
||||||
|
if not pm.is_installed("pypdf2"):
|
||||||
|
pm.install("pypdf2")
|
||||||
|
from pypdf2 import PdfReader
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
# Read PDF from memory
|
||||||
|
pdf_content = await file.read()
|
||||||
|
pdf_file = BytesIO(pdf_content)
|
||||||
|
reader = PdfReader(pdf_file)
|
||||||
|
content = ""
|
||||||
|
for page in reader.pages:
|
||||||
|
content += page.extract_text() + "\n"
|
||||||
|
|
||||||
|
case ".docx":
|
||||||
|
if not pm.is_installed("docx"):
|
||||||
|
pm.install("docx")
|
||||||
|
from docx import Document
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
# Read DOCX from memory
|
||||||
|
docx_content = await file.read()
|
||||||
|
docx_file = BytesIO(docx_content)
|
||||||
|
doc = Document(docx_file)
|
||||||
|
content = "\n".join(
|
||||||
|
[paragraph.text for paragraph in doc.paragraphs]
|
||||||
|
)
|
||||||
|
|
||||||
|
case ".pptx":
|
||||||
|
if not pm.is_installed("pptx"):
|
||||||
|
pm.install("pptx")
|
||||||
|
from pptx import Presentation
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
# Read PPTX from memory
|
||||||
|
pptx_content = await file.read()
|
||||||
|
pptx_file = BytesIO(pptx_content)
|
||||||
|
prs = Presentation(pptx_file)
|
||||||
|
content = ""
|
||||||
|
for slide in prs.slides:
|
||||||
|
for shape in slide.shapes:
|
||||||
|
if hasattr(shape, "text"):
|
||||||
|
content += shape.text + "\n"
|
||||||
|
|
||||||
|
case _:
|
||||||
raise HTTPException(
|
raise HTTPException(
|
||||||
status_code=400,
|
status_code=400,
|
||||||
detail="Unsupported file type. Only .txt and .md files are supported",
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Insert content into RAG system
|
||||||
|
if content:
|
||||||
|
# Add description if provided
|
||||||
|
if description:
|
||||||
|
content = f"{description}\n\n{content}"
|
||||||
|
|
||||||
|
await rag.ainsert(content)
|
||||||
|
logging.info(f"Successfully indexed file: {file.filename}")
|
||||||
|
|
||||||
return InsertResponse(
|
return InsertResponse(
|
||||||
status="success",
|
status="success",
|
||||||
message=f"File '{file.filename}' successfully inserted",
|
message=f"File '{file.filename}' successfully inserted",
|
||||||
document_count=1,
|
document_count=1,
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail="No content could be extracted from the file",
|
||||||
|
)
|
||||||
|
|
||||||
except UnicodeDecodeError:
|
except UnicodeDecodeError:
|
||||||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
@app.post(
|
@app.post(
|
||||||
@@ -526,32 +670,110 @@ def create_app(args):
|
|||||||
dependencies=[Depends(optional_api_key)],
|
dependencies=[Depends(optional_api_key)],
|
||||||
)
|
)
|
||||||
async def insert_batch(files: List[UploadFile] = File(...)):
|
async def insert_batch(files: List[UploadFile] = File(...)):
|
||||||
|
"""Process multiple files in batch mode
|
||||||
|
|
||||||
|
Args:
|
||||||
|
files: List of files to process
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: Status of the batch insertion operation
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: For processing errors
|
||||||
|
"""
|
||||||
try:
|
try:
|
||||||
inserted_count = 0
|
inserted_count = 0
|
||||||
failed_files = []
|
failed_files = []
|
||||||
|
|
||||||
for file in files:
|
for file in files:
|
||||||
try:
|
try:
|
||||||
content = await file.read()
|
content = ""
|
||||||
if file.filename.endswith((".txt", ".md")):
|
ext = Path(file.filename).suffix.lower()
|
||||||
text = content.decode("utf-8")
|
|
||||||
await rag.ainsert(text)
|
match ext:
|
||||||
inserted_count += 1
|
case ".txt" | ".md":
|
||||||
else:
|
text_content = await file.read()
|
||||||
|
content = text_content.decode("utf-8")
|
||||||
|
|
||||||
|
case ".pdf":
|
||||||
|
if not pm.is_installed("pypdf2"):
|
||||||
|
pm.install("pypdf2")
|
||||||
|
from pypdf2 import PdfReader
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
pdf_content = await file.read()
|
||||||
|
pdf_file = BytesIO(pdf_content)
|
||||||
|
reader = PdfReader(pdf_file)
|
||||||
|
for page in reader.pages:
|
||||||
|
content += page.extract_text() + "\n"
|
||||||
|
|
||||||
|
case ".docx":
|
||||||
|
if not pm.is_installed("docx"):
|
||||||
|
pm.install("docx")
|
||||||
|
from docx import Document
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
docx_content = await file.read()
|
||||||
|
docx_file = BytesIO(docx_content)
|
||||||
|
doc = Document(docx_file)
|
||||||
|
content = "\n".join(
|
||||||
|
[paragraph.text for paragraph in doc.paragraphs]
|
||||||
|
)
|
||||||
|
|
||||||
|
case ".pptx":
|
||||||
|
if not pm.is_installed("pptx"):
|
||||||
|
pm.install("pptx")
|
||||||
|
from pptx import Presentation
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
pptx_content = await file.read()
|
||||||
|
pptx_file = BytesIO(pptx_content)
|
||||||
|
prs = Presentation(pptx_file)
|
||||||
|
for slide in prs.slides:
|
||||||
|
for shape in slide.shapes:
|
||||||
|
if hasattr(shape, "text"):
|
||||||
|
content += shape.text + "\n"
|
||||||
|
|
||||||
|
case _:
|
||||||
failed_files.append(f"{file.filename} (unsupported type)")
|
failed_files.append(f"{file.filename} (unsupported type)")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if content:
|
||||||
|
await rag.ainsert(content)
|
||||||
|
inserted_count += 1
|
||||||
|
logging.info(f"Successfully indexed file: {file.filename}")
|
||||||
|
else:
|
||||||
|
failed_files.append(f"{file.filename} (no content extracted)")
|
||||||
|
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
failed_files.append(f"{file.filename} (encoding error)")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
failed_files.append(f"{file.filename} ({str(e)})")
|
failed_files.append(f"{file.filename} ({str(e)})")
|
||||||
|
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
||||||
|
|
||||||
status_message = f"Successfully inserted {inserted_count} documents"
|
# Prepare status message
|
||||||
|
if inserted_count == len(files):
|
||||||
|
status = "success"
|
||||||
|
status_message = f"Successfully inserted all {inserted_count} documents"
|
||||||
|
elif inserted_count > 0:
|
||||||
|
status = "partial_success"
|
||||||
|
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
||||||
|
if failed_files:
|
||||||
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||||
|
else:
|
||||||
|
status = "failure"
|
||||||
|
status_message = "No documents were successfully inserted"
|
||||||
if failed_files:
|
if failed_files:
|
||||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||||
|
|
||||||
return InsertResponse(
|
return InsertResponse(
|
||||||
status="success" if inserted_count > 0 else "partial_success",
|
status=status,
|
||||||
message=status_message,
|
message=status_message,
|
||||||
document_count=len(files),
|
document_count=inserted_count,
|
||||||
)
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
logging.error(f"Batch processing error: {str(e)}")
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
@app.delete(
|
@app.delete(
|
||||||
|
@@ -7,6 +7,7 @@ nest_asyncio
|
|||||||
numpy
|
numpy
|
||||||
ollama
|
ollama
|
||||||
openai
|
openai
|
||||||
|
pipmaster
|
||||||
python-dotenv
|
python-dotenv
|
||||||
python-multipart
|
python-multipart
|
||||||
tenacity
|
tenacity
|
||||||
|
@@ -231,6 +231,16 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
async def all_keys(self) -> list[dict]:
|
||||||
|
if "llm_response_cache" == self.namespace:
|
||||||
|
sql = "select workspace,mode,id from lightrag_llm_cache"
|
||||||
|
res = await self.db.query(sql, multirows=True)
|
||||||
|
return res
|
||||||
|
else:
|
||||||
|
logger.error(
|
||||||
|
f"all_keys is only implemented for llm_response_cache, not for {self.namespace}"
|
||||||
|
)
|
||||||
|
|
||||||
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
||||||
"""Filter out duplicated content"""
|
"""Filter out duplicated content"""
|
||||||
sql = SQL_TEMPLATES["filter_keys"].format(
|
sql = SQL_TEMPLATES["filter_keys"].format(
|
||||||
@@ -412,7 +422,10 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||||||
|
|
||||||
async def filter_keys(self, data: list[str]) -> set[str]:
|
async def filter_keys(self, data: list[str]) -> set[str]:
|
||||||
"""Return keys that don't exist in storage"""
|
"""Return keys that don't exist in storage"""
|
||||||
sql = f"SELECT id FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id IN ({",".join([f"'{_id}'" for _id in data])})"
|
keys = ",".join([f"'{_id}'" for _id in data])
|
||||||
|
sql = (
|
||||||
|
f"SELECT id FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id IN ({keys})"
|
||||||
|
)
|
||||||
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
|
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
|
||||||
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
||||||
if result is None:
|
if result is None:
|
||||||
|
Reference in New Issue
Block a user