diff --git a/README.md b/README.md
index 7fab9a01..d11b1691 100644
--- a/README.md
+++ b/README.md
@@ -397,6 +397,125 @@ if __name__ == "__main__":
+## API Server Implementation
+
+LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
+
+### Setting up the API Server
+
+Click to expand setup instructions
+
+1. First, ensure you have the required dependencies:
+```bash
+pip install fastapi uvicorn pydantic
+```
+
+2. Set up your environment variables:
+```bash
+export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
+```
+
+3. Run the API server:
+```bash
+python examples/lightrag_api_openai_compatible_demo.py
+```
+
+The server will start on `http://0.0.0.0:8020`.
+
+
+### API Endpoints
+
+The API server provides the following endpoints:
+
+#### 1. Query Endpoint
+
+Click to view Query endpoint details
+
+- **URL:** `/query`
+- **Method:** POST
+- **Body:**
+```json
+{
+ "query": "Your question here",
+ "mode": "hybrid" // Can be "naive", "local", "global", or "hybrid"
+}
+```
+- **Example:**
+```bash
+curl -X POST "http://127.0.0.1:8020/query" \
+ -H "Content-Type: application/json" \
+ -d '{"query": "What are the main themes?", "mode": "hybrid"}'
+```
+
+
+#### 2. Insert Text Endpoint
+
+Click to view Insert Text endpoint details
+
+- **URL:** `/insert`
+- **Method:** POST
+- **Body:**
+```json
+{
+ "text": "Your text content here"
+}
+```
+- **Example:**
+```bash
+curl -X POST "http://127.0.0.1:8020/insert" \
+ -H "Content-Type: application/json" \
+ -d '{"text": "Content to be inserted into RAG"}'
+```
+
+
+#### 3. Insert File Endpoint
+
+Click to view Insert File endpoint details
+
+- **URL:** `/insert_file`
+- **Method:** POST
+- **Body:**
+```json
+{
+ "file_path": "path/to/your/file.txt"
+}
+```
+- **Example:**
+```bash
+curl -X POST "http://127.0.0.1:8020/insert_file" \
+ -H "Content-Type: application/json" \
+ -d '{"file_path": "./book.txt"}'
+```
+
+
+#### 4. Health Check Endpoint
+
+Click to view Health Check endpoint details
+
+- **URL:** `/health`
+- **Method:** GET
+- **Example:**
+```bash
+curl -X GET "http://127.0.0.1:8020/health"
+```
+
+
+### Configuration
+
+The API server can be configured using environment variables:
+- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
+- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
+
+### Error Handling
+
+Click to view error handling details
+
+The API includes comprehensive error handling:
+- File not found errors (404)
+- Processing errors (500)
+- Supports multiple file encodings (UTF-8 and GBK)
+
+
## Evaluation
### Dataset
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
diff --git a/examples/lightrag_api_openai_compatible_demo.py b/examples/lightrag_api_openai_compatible_demo.py
new file mode 100644
index 00000000..f8d105ea
--- /dev/null
+++ b/examples/lightrag_api_openai_compatible_demo.py
@@ -0,0 +1,153 @@
+from fastapi import FastAPI, HTTPException
+from pydantic import BaseModel
+import os
+from lightrag import LightRAG, QueryParam
+from lightrag.llm import openai_complete_if_cache, openai_embedding
+from lightrag.utils import EmbeddingFunc
+import numpy as np
+from typing import Optional
+import asyncio
+import nest_asyncio
+
+# Apply nest_asyncio to solve event loop issues
+nest_asyncio.apply()
+
+DEFAULT_RAG_DIR="index_default"
+app = FastAPI(title="LightRAG API", description="API for RAG operations")
+
+# Configure working directory
+WORKING_DIR = os.environ.get('RAG_DIR', f'{DEFAULT_RAG_DIR}')
+print(f"WORKING_DIR: {WORKING_DIR}")
+if not os.path.exists(WORKING_DIR):
+ os.mkdir(WORKING_DIR)
+
+# LLM model function
+async def llm_model_func(
+ prompt, system_prompt=None, history_messages=[], **kwargs
+) -> str:
+ return await openai_complete_if_cache(
+ "gpt-4o-mini",
+ prompt,
+ system_prompt=system_prompt,
+ history_messages=history_messages,
+ api_key='YOUR_API_KEY',
+ base_url="YourURL/v1",
+ **kwargs,
+ )
+
+# Embedding function
+async def embedding_func(texts: list[str]) -> np.ndarray:
+ return await openai_embedding(
+ texts,
+ model="text-embedding-3-large",
+ api_key='YOUR_API_KEY',
+ base_url="YourURL/v1",
+ )
+
+# Initialize RAG instance
+rag = LightRAG(
+ working_dir=WORKING_DIR,
+ llm_model_func=llm_model_func,
+ embedding_func=EmbeddingFunc(
+ embedding_dim=3072, max_token_size=8192, func=embedding_func
+ ),
+)
+
+# Data models
+class QueryRequest(BaseModel):
+ query: str
+ mode: str = "hybrid"
+
+class InsertRequest(BaseModel):
+ text: str
+
+class InsertFileRequest(BaseModel):
+ file_path: str
+
+class Response(BaseModel):
+ status: str
+ data: Optional[str] = None
+ message: Optional[str] = None
+
+# API routes
+@app.post("/query", response_model=Response)
+async def query_endpoint(request: QueryRequest):
+ try:
+ loop = asyncio.get_event_loop()
+ result = await loop.run_in_executor(
+ None,
+ lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
+ )
+ return Response(
+ status="success",
+ data=result
+ )
+ except Exception as e:
+ raise HTTPException(status_code=500, detail=str(e))
+
+@app.post("/insert", response_model=Response)
+async def insert_endpoint(request: InsertRequest):
+ try:
+ loop = asyncio.get_event_loop()
+ await loop.run_in_executor(None, lambda: rag.insert(request.text))
+ return Response(
+ status="success",
+ message="Text inserted successfully"
+ )
+ except Exception as e:
+ raise HTTPException(status_code=500, detail=str(e))
+
+@app.post("/insert_file", response_model=Response)
+async def insert_file(request: InsertFileRequest):
+ try:
+ # Check if file exists
+ if not os.path.exists(request.file_path):
+ raise HTTPException(
+ status_code=404,
+ detail=f"File not found: {request.file_path}"
+ )
+
+ # Read file content
+ try:
+ with open(request.file_path, 'r', encoding='utf-8') as f:
+ content = f.read()
+ except UnicodeDecodeError:
+ # If UTF-8 decoding fails, try other encodings
+ with open(request.file_path, 'r', encoding='gbk') as f:
+ content = f.read()
+
+ # Insert file content
+ loop = asyncio.get_event_loop()
+ await loop.run_in_executor(None, lambda: rag.insert(content))
+
+ return Response(
+ status="success",
+ message=f"File content from {request.file_path} inserted successfully"
+ )
+ except Exception as e:
+ raise HTTPException(status_code=500, detail=str(e))
+
+@app.get("/health")
+async def health_check():
+ return {"status": "healthy"}
+
+if __name__ == "__main__":
+ import uvicorn
+ uvicorn.run(app, host="0.0.0.0", port=8020)
+
+# Usage example
+# To run the server, use the following command in your terminal:
+# python lightrag_api_openai_compatible_demo.py
+
+# Example requests:
+# 1. Query:
+# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
+
+# 2. Insert text:
+# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
+
+# 3. Insert file:
+# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
+
+# 4. Health check:
+# curl -X GET "http://127.0.0.1:8020/health"
\ No newline at end of file