Add Milvus as vector storage
This commit is contained in:
88
lightrag/kg/milvus_impl.py
Normal file
88
lightrag/kg/milvus_impl.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import asyncio
|
||||
import os
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
from lightrag.utils import logger
|
||||
from ..base import BaseVectorStorage
|
||||
|
||||
from pymilvus import MilvusClient
|
||||
|
||||
|
||||
@dataclass
|
||||
class MilvusVectorDBStorge(BaseVectorStorage):
|
||||
@staticmethod
|
||||
def create_collection_if_not_exist(
|
||||
client: MilvusClient, collection_name: str, **kwargs
|
||||
):
|
||||
if client.has_collection(collection_name):
|
||||
return
|
||||
client.create_collection(
|
||||
collection_name, max_length=64, id_type="string", **kwargs
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
self._client = MilvusClient(
|
||||
uri=os.environ.get(
|
||||
"MILVUS_URI",
|
||||
os.path.join(self.global_config["working_dir"], "milvus_lite.db"),
|
||||
),
|
||||
user=os.environ.get("MILVUS_USER", ""),
|
||||
password=os.environ.get("MILVUS_PASSWORD", ""),
|
||||
token=os.environ.get("MILVUS_TOKEN", ""),
|
||||
db_name=os.environ.get("MILVUS_DB_NAME", ""),
|
||||
)
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
MilvusVectorDBStorge.create_collection_if_not_exist(
|
||||
self._client,
|
||||
self.namespace,
|
||||
dimension=self.embedding_func.embedding_dim,
|
||||
)
|
||||
|
||||
async def upsert(self, data: dict[str, dict]):
|
||||
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
||||
if not len(data):
|
||||
logger.warning("You insert an empty data to vector DB")
|
||||
return []
|
||||
list_data = [
|
||||
{
|
||||
"id": k,
|
||||
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
|
||||
}
|
||||
for k, v in data.items()
|
||||
]
|
||||
contents = [v["content"] for v in data.values()]
|
||||
batches = [
|
||||
contents[i : i + self._max_batch_size]
|
||||
for i in range(0, len(contents), self._max_batch_size)
|
||||
]
|
||||
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
||||
embeddings_list = []
|
||||
for f in tqdm_async(
|
||||
asyncio.as_completed(embedding_tasks),
|
||||
total=len(embedding_tasks),
|
||||
desc="Generating embeddings",
|
||||
unit="batch",
|
||||
):
|
||||
embeddings = await f
|
||||
embeddings_list.append(embeddings)
|
||||
embeddings = np.concatenate(embeddings_list)
|
||||
for i, d in enumerate(list_data):
|
||||
d["vector"] = embeddings[i]
|
||||
results = self._client.upsert(collection_name=self.namespace, data=list_data)
|
||||
return results
|
||||
|
||||
async def query(self, query, top_k=5):
|
||||
embedding = await self.embedding_func([query])
|
||||
results = self._client.search(
|
||||
collection_name=self.namespace,
|
||||
data=embedding,
|
||||
limit=top_k,
|
||||
output_fields=list(self.meta_fields),
|
||||
search_params={"metric_type": "COSINE", "params": {"radius": 0.2}},
|
||||
)
|
||||
print(results)
|
||||
return [
|
||||
{**dp["entity"], "id": dp["id"], "distance": dp["distance"]}
|
||||
for dp in results[0]
|
||||
]
|
Reference in New Issue
Block a user