Merge pull request #1334 from danielaskdd/main
Refactoring entity and edge merging and add env FORCE_LLM_SUMMARY_ON_MERGE
This commit is contained in:
@@ -43,11 +43,15 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
|||||||
SUMMARY_LANGUAGE=English
|
SUMMARY_LANGUAGE=English
|
||||||
# CHUNK_SIZE=1200
|
# CHUNK_SIZE=1200
|
||||||
# CHUNK_OVERLAP_SIZE=100
|
# CHUNK_OVERLAP_SIZE=100
|
||||||
### Max tokens for entity or relations summary
|
|
||||||
# MAX_TOKEN_SUMMARY=500
|
|
||||||
### Number of parallel processing documents in one patch
|
### Number of parallel processing documents in one patch
|
||||||
# MAX_PARALLEL_INSERT=2
|
# MAX_PARALLEL_INSERT=2
|
||||||
|
|
||||||
|
### Max tokens for entity/relations description after merge
|
||||||
|
# MAX_TOKEN_SUMMARY=500
|
||||||
|
### Number of entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
|
||||||
|
# FORCE_LLM_SUMMARY_ON_MERGE=6
|
||||||
|
|
||||||
### Num of chunks send to Embedding in single request
|
### Num of chunks send to Embedding in single request
|
||||||
# EMBEDDING_BATCH_NUM=32
|
# EMBEDDING_BATCH_NUM=32
|
||||||
### Max concurrency requests for Embedding
|
### Max concurrency requests for Embedding
|
||||||
|
@@ -1 +1 @@
|
|||||||
__api_version__ = "0143"
|
__api_version__ = "0145"
|
||||||
|
@@ -261,8 +261,12 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
|||||||
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
||||||
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
||||||
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
||||||
ASCIIColors.white(" └─ Top-K: ", end="")
|
ASCIIColors.white(" ├─ Top-K: ", end="")
|
||||||
ASCIIColors.yellow(f"{args.top_k}")
|
ASCIIColors.yellow(f"{args.top_k}")
|
||||||
|
ASCIIColors.white(" ├─ Max Token Summary: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{int(os.getenv('MAX_TOKEN_SUMMARY', 500))}")
|
||||||
|
ASCIIColors.white(" └─ Force LLM Summary on Merge: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{int(os.getenv('FORCE_LLM_SUMMARY_ON_MERGE', 6))}")
|
||||||
|
|
||||||
# System Configuration
|
# System Configuration
|
||||||
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
||||||
|
File diff suppressed because one or more lines are too long
2
lightrag/api/webui/index.html
generated
2
lightrag/api/webui/index.html
generated
@@ -8,7 +8,7 @@
|
|||||||
<link rel="icon" type="image/svg+xml" href="logo.png" />
|
<link rel="icon" type="image/svg+xml" href="logo.png" />
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||||
<title>Lightrag</title>
|
<title>Lightrag</title>
|
||||||
<script type="module" crossorigin src="/webui/assets/index-Cicy56pP.js"></script>
|
<script type="module" crossorigin src="/webui/assets/index-BPm_J2w3.js"></script>
|
||||||
<link rel="stylesheet" crossorigin href="/webui/assets/index-CTB4Vp_z.css">
|
<link rel="stylesheet" crossorigin href="/webui/assets/index-CTB4Vp_z.css">
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
|
@@ -103,8 +103,10 @@ class LightRAG:
|
|||||||
entity_extract_max_gleaning: int = field(default=1)
|
entity_extract_max_gleaning: int = field(default=1)
|
||||||
"""Maximum number of entity extraction attempts for ambiguous content."""
|
"""Maximum number of entity extraction attempts for ambiguous content."""
|
||||||
|
|
||||||
entity_summary_to_max_tokens: int = field(
|
summary_to_max_tokens: int = field(default=int(os.getenv("MAX_TOKEN_SUMMARY", 500)))
|
||||||
default=int(os.getenv("MAX_TOKEN_SUMMARY", 500))
|
|
||||||
|
force_llm_summary_on_merge: int = field(
|
||||||
|
default=int(os.getenv("FORCE_LLM_SUMMARY_ON_MERGE", 6))
|
||||||
)
|
)
|
||||||
|
|
||||||
# Text chunking
|
# Text chunking
|
||||||
|
@@ -117,15 +117,13 @@ async def _handle_entity_relation_summary(
|
|||||||
use_llm_func: callable = global_config["llm_model_func"]
|
use_llm_func: callable = global_config["llm_model_func"]
|
||||||
llm_max_tokens = global_config["llm_model_max_token_size"]
|
llm_max_tokens = global_config["llm_model_max_token_size"]
|
||||||
tiktoken_model_name = global_config["tiktoken_model_name"]
|
tiktoken_model_name = global_config["tiktoken_model_name"]
|
||||||
summary_max_tokens = global_config["entity_summary_to_max_tokens"]
|
summary_max_tokens = global_config["summary_to_max_tokens"]
|
||||||
|
|
||||||
language = global_config["addon_params"].get(
|
language = global_config["addon_params"].get(
|
||||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||||
)
|
)
|
||||||
|
|
||||||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||||||
if len(tokens) < summary_max_tokens: # No need for summary
|
|
||||||
return description
|
|
||||||
|
|
||||||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||||||
use_description = decode_tokens_by_tiktoken(
|
use_description = decode_tokens_by_tiktoken(
|
||||||
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
||||||
@@ -138,14 +136,6 @@ async def _handle_entity_relation_summary(
|
|||||||
use_prompt = prompt_template.format(**context_base)
|
use_prompt = prompt_template.format(**context_base)
|
||||||
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
||||||
|
|
||||||
# Update pipeline status when LLM summary is needed
|
|
||||||
status_message = "Use LLM to re-summary description..."
|
|
||||||
logger.info(status_message)
|
|
||||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
|
||||||
async with pipeline_status_lock:
|
|
||||||
pipeline_status["latest_message"] = status_message
|
|
||||||
pipeline_status["history_messages"].append(status_message)
|
|
||||||
|
|
||||||
# Use LLM function with cache
|
# Use LLM function with cache
|
||||||
summary = await use_llm_func_with_cache(
|
summary = await use_llm_func_with_cache(
|
||||||
use_prompt,
|
use_prompt,
|
||||||
@@ -244,14 +234,6 @@ async def _merge_nodes_then_upsert(
|
|||||||
|
|
||||||
already_node = await knowledge_graph_inst.get_node(entity_name)
|
already_node = await knowledge_graph_inst.get_node(entity_name)
|
||||||
if already_node is not None:
|
if already_node is not None:
|
||||||
# Update pipeline status when a node that needs merging is found
|
|
||||||
status_message = f"Merging entity: {entity_name}"
|
|
||||||
logger.info(status_message)
|
|
||||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
|
||||||
async with pipeline_status_lock:
|
|
||||||
pipeline_status["latest_message"] = status_message
|
|
||||||
pipeline_status["history_messages"].append(status_message)
|
|
||||||
|
|
||||||
already_entity_types.append(already_node["entity_type"])
|
already_entity_types.append(already_node["entity_type"])
|
||||||
already_source_ids.extend(
|
already_source_ids.extend(
|
||||||
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
|
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
|
||||||
@@ -278,7 +260,19 @@ async def _merge_nodes_then_upsert(
|
|||||||
set([dp["file_path"] for dp in nodes_data] + already_file_paths)
|
set([dp["file_path"] for dp in nodes_data] + already_file_paths)
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.debug(f"file_path: {file_path}")
|
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||||
|
|
||||||
|
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
|
||||||
|
num_new_fragment = len(set([dp["description"] for dp in nodes_data]))
|
||||||
|
|
||||||
|
if num_fragment > 1:
|
||||||
|
if num_fragment >= force_llm_summary_on_merge:
|
||||||
|
status_message = f"LLM merge N: {entity_name} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
||||||
|
logger.info(status_message)
|
||||||
|
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||||
|
async with pipeline_status_lock:
|
||||||
|
pipeline_status["latest_message"] = status_message
|
||||||
|
pipeline_status["history_messages"].append(status_message)
|
||||||
description = await _handle_entity_relation_summary(
|
description = await _handle_entity_relation_summary(
|
||||||
entity_name,
|
entity_name,
|
||||||
description,
|
description,
|
||||||
@@ -287,6 +281,14 @@ async def _merge_nodes_then_upsert(
|
|||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
llm_response_cache,
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
status_message = f"Merge N: {entity_name} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
||||||
|
logger.info(status_message)
|
||||||
|
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||||
|
async with pipeline_status_lock:
|
||||||
|
pipeline_status["latest_message"] = status_message
|
||||||
|
pipeline_status["history_messages"].append(status_message)
|
||||||
|
|
||||||
node_data = dict(
|
node_data = dict(
|
||||||
entity_id=entity_name,
|
entity_id=entity_name,
|
||||||
entity_type=entity_type,
|
entity_type=entity_type,
|
||||||
@@ -319,14 +321,6 @@ async def _merge_edges_then_upsert(
|
|||||||
already_file_paths = []
|
already_file_paths = []
|
||||||
|
|
||||||
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
|
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
|
||||||
# Update pipeline status when an edge that needs merging is found
|
|
||||||
status_message = f"Merging edge::: {src_id} - {tgt_id}"
|
|
||||||
logger.info(status_message)
|
|
||||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
|
||||||
async with pipeline_status_lock:
|
|
||||||
pipeline_status["latest_message"] = status_message
|
|
||||||
pipeline_status["history_messages"].append(status_message)
|
|
||||||
|
|
||||||
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
|
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
|
||||||
# Handle the case where get_edge returns None or missing fields
|
# Handle the case where get_edge returns None or missing fields
|
||||||
if already_edge:
|
if already_edge:
|
||||||
@@ -404,6 +398,22 @@ async def _merge_edges_then_upsert(
|
|||||||
"file_path": file_path,
|
"file_path": file_path,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
|
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||||
|
|
||||||
|
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
|
||||||
|
num_new_fragment = len(
|
||||||
|
set([dp["description"] for dp in edges_data if dp.get("description")])
|
||||||
|
)
|
||||||
|
|
||||||
|
if num_fragment > 1:
|
||||||
|
if num_fragment >= force_llm_summary_on_merge:
|
||||||
|
status_message = f"LLM merge E: {src_id} - {tgt_id} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
||||||
|
logger.info(status_message)
|
||||||
|
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||||
|
async with pipeline_status_lock:
|
||||||
|
pipeline_status["latest_message"] = status_message
|
||||||
|
pipeline_status["history_messages"].append(status_message)
|
||||||
description = await _handle_entity_relation_summary(
|
description = await _handle_entity_relation_summary(
|
||||||
f"({src_id}, {tgt_id})",
|
f"({src_id}, {tgt_id})",
|
||||||
description,
|
description,
|
||||||
@@ -412,6 +422,14 @@ async def _merge_edges_then_upsert(
|
|||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
llm_response_cache,
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
status_message = f"Merge E: {src_id} - {tgt_id} | {num_new_fragment}+{num_fragment-num_new_fragment}"
|
||||||
|
logger.info(status_message)
|
||||||
|
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||||
|
async with pipeline_status_lock:
|
||||||
|
pipeline_status["latest_message"] = status_message
|
||||||
|
pipeline_status["history_messages"].append(status_message)
|
||||||
|
|
||||||
await knowledge_graph_inst.upsert_edge(
|
await knowledge_graph_inst.upsert_edge(
|
||||||
src_id,
|
src_id,
|
||||||
tgt_id,
|
tgt_id,
|
||||||
@@ -550,8 +568,10 @@ async def extract_entities(
|
|||||||
Args:
|
Args:
|
||||||
chunk_key_dp (tuple[str, TextChunkSchema]):
|
chunk_key_dp (tuple[str, TextChunkSchema]):
|
||||||
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
||||||
|
Returns:
|
||||||
|
tuple: (maybe_nodes, maybe_edges) containing extracted entities and relationships
|
||||||
"""
|
"""
|
||||||
nonlocal processed_chunks, total_entities_count, total_relations_count
|
nonlocal processed_chunks
|
||||||
chunk_key = chunk_key_dp[0]
|
chunk_key = chunk_key_dp[0]
|
||||||
chunk_dp = chunk_key_dp[1]
|
chunk_dp = chunk_key_dp[1]
|
||||||
content = chunk_dp["content"]
|
content = chunk_dp["content"]
|
||||||
@@ -623,13 +643,35 @@ async def extract_entities(
|
|||||||
pipeline_status["latest_message"] = log_message
|
pipeline_status["latest_message"] = log_message
|
||||||
pipeline_status["history_messages"].append(log_message)
|
pipeline_status["history_messages"].append(log_message)
|
||||||
|
|
||||||
# Use graph database lock to ensure atomic merges and updates
|
# Return the extracted nodes and edges for centralized processing
|
||||||
chunk_entities_data = []
|
return maybe_nodes, maybe_edges
|
||||||
chunk_relationships_data = []
|
|
||||||
|
|
||||||
async with graph_db_lock:
|
# Handle all chunks in parallel and collect results
|
||||||
# Process and update entities
|
tasks = [_process_single_content(c) for c in ordered_chunks]
|
||||||
|
chunk_results = await asyncio.gather(*tasks)
|
||||||
|
|
||||||
|
# Collect all nodes and edges from all chunks
|
||||||
|
all_nodes = defaultdict(list)
|
||||||
|
all_edges = defaultdict(list)
|
||||||
|
|
||||||
|
for maybe_nodes, maybe_edges in chunk_results:
|
||||||
|
# Collect nodes
|
||||||
for entity_name, entities in maybe_nodes.items():
|
for entity_name, entities in maybe_nodes.items():
|
||||||
|
all_nodes[entity_name].extend(entities)
|
||||||
|
|
||||||
|
# Collect edges with sorted keys for undirected graph
|
||||||
|
for edge_key, edges in maybe_edges.items():
|
||||||
|
sorted_edge_key = tuple(sorted(edge_key))
|
||||||
|
all_edges[sorted_edge_key].extend(edges)
|
||||||
|
|
||||||
|
# Centralized processing of all nodes and edges
|
||||||
|
entities_data = []
|
||||||
|
relationships_data = []
|
||||||
|
|
||||||
|
# Use graph database lock to ensure atomic merges and updates
|
||||||
|
async with graph_db_lock:
|
||||||
|
# Process and update all entities at once
|
||||||
|
for entity_name, entities in all_nodes.items():
|
||||||
entity_data = await _merge_nodes_then_upsert(
|
entity_data = await _merge_nodes_then_upsert(
|
||||||
entity_name,
|
entity_name,
|
||||||
entities,
|
entities,
|
||||||
@@ -639,15 +681,13 @@ async def extract_entities(
|
|||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
llm_response_cache,
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
chunk_entities_data.append(entity_data)
|
entities_data.append(entity_data)
|
||||||
|
|
||||||
# Process and update relationships
|
# Process and update all relationships at once
|
||||||
for edge_key, edges in maybe_edges.items():
|
for edge_key, edges in all_edges.items():
|
||||||
# Ensure edge direction consistency
|
|
||||||
sorted_edge_key = tuple(sorted(edge_key))
|
|
||||||
edge_data = await _merge_edges_then_upsert(
|
edge_data = await _merge_edges_then_upsert(
|
||||||
sorted_edge_key[0],
|
edge_key[0],
|
||||||
sorted_edge_key[1],
|
edge_key[1],
|
||||||
edges,
|
edges,
|
||||||
knowledge_graph_inst,
|
knowledge_graph_inst,
|
||||||
global_config,
|
global_config,
|
||||||
@@ -655,10 +695,10 @@ async def extract_entities(
|
|||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
llm_response_cache,
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
chunk_relationships_data.append(edge_data)
|
relationships_data.append(edge_data)
|
||||||
|
|
||||||
# Update vector database (within the same lock to ensure atomicity)
|
# Update vector databases with all collected data
|
||||||
if entity_vdb is not None and chunk_entities_data:
|
if entity_vdb is not None and entities_data:
|
||||||
data_for_vdb = {
|
data_for_vdb = {
|
||||||
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
|
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
|
||||||
"entity_name": dp["entity_name"],
|
"entity_name": dp["entity_name"],
|
||||||
@@ -667,11 +707,11 @@ async def extract_entities(
|
|||||||
"source_id": dp["source_id"],
|
"source_id": dp["source_id"],
|
||||||
"file_path": dp.get("file_path", "unknown_source"),
|
"file_path": dp.get("file_path", "unknown_source"),
|
||||||
}
|
}
|
||||||
for dp in chunk_entities_data
|
for dp in entities_data
|
||||||
}
|
}
|
||||||
await entity_vdb.upsert(data_for_vdb)
|
await entity_vdb.upsert(data_for_vdb)
|
||||||
|
|
||||||
if relationships_vdb is not None and chunk_relationships_data:
|
if relationships_vdb is not None and relationships_data:
|
||||||
data_for_vdb = {
|
data_for_vdb = {
|
||||||
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
|
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
|
||||||
"src_id": dp["src_id"],
|
"src_id": dp["src_id"],
|
||||||
@@ -681,17 +721,13 @@ async def extract_entities(
|
|||||||
"source_id": dp["source_id"],
|
"source_id": dp["source_id"],
|
||||||
"file_path": dp.get("file_path", "unknown_source"),
|
"file_path": dp.get("file_path", "unknown_source"),
|
||||||
}
|
}
|
||||||
for dp in chunk_relationships_data
|
for dp in relationships_data
|
||||||
}
|
}
|
||||||
await relationships_vdb.upsert(data_for_vdb)
|
await relationships_vdb.upsert(data_for_vdb)
|
||||||
|
|
||||||
# Update counters
|
# Update total counts
|
||||||
total_entities_count += len(chunk_entities_data)
|
total_entities_count = len(entities_data)
|
||||||
total_relations_count += len(chunk_relationships_data)
|
total_relations_count = len(relationships_data)
|
||||||
|
|
||||||
# Handle all chunks in parallel
|
|
||||||
tasks = [_process_single_content(c) for c in ordered_chunks]
|
|
||||||
await asyncio.gather(*tasks)
|
|
||||||
|
|
||||||
log_message = f"Extracted {total_entities_count} entities + {total_relations_count} relationships (total)"
|
log_message = f"Extracted {total_entities_count} entities + {total_relations_count} relationships (total)"
|
||||||
logger.info(log_message)
|
logger.info(log_message)
|
||||||
|
@@ -967,7 +967,7 @@ async def use_llm_func_with_cache(
|
|||||||
res: str = await use_llm_func(input_text, **kwargs)
|
res: str = await use_llm_func(input_text, **kwargs)
|
||||||
|
|
||||||
# Save to cache
|
# Save to cache
|
||||||
logger.info(f"Saving LLM cache for {arg_hash}")
|
logger.info(f" == LLM cache == saving {arg_hash}")
|
||||||
await save_to_cache(
|
await save_to_cache(
|
||||||
llm_response_cache,
|
llm_response_cache,
|
||||||
CacheData(
|
CacheData(
|
||||||
|
@@ -166,7 +166,7 @@ export default function PipelineStatusDialog({
|
|||||||
{/* Latest Message */}
|
{/* Latest Message */}
|
||||||
<div className="space-y-2">
|
<div className="space-y-2">
|
||||||
<div className="text-sm font-medium">{t('documentPanel.pipelineStatus.latestMessage')}:</div>
|
<div className="text-sm font-medium">{t('documentPanel.pipelineStatus.latestMessage')}:</div>
|
||||||
<div className="font-mono text-sm rounded-md bg-zinc-800 text-zinc-100 p-3">
|
<div className="font-mono text-xs rounded-md bg-zinc-800 text-zinc-100 p-3">
|
||||||
{status?.latest_message || '-'}
|
{status?.latest_message || '-'}
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
@@ -177,7 +177,7 @@ export default function PipelineStatusDialog({
|
|||||||
<div
|
<div
|
||||||
ref={historyRef}
|
ref={historyRef}
|
||||||
onScroll={handleScroll}
|
onScroll={handleScroll}
|
||||||
className="font-mono text-sm rounded-md bg-zinc-800 text-zinc-100 p-3 overflow-y-auto min-h-[7.5em] max-h-[40vh]"
|
className="font-mono text-xs rounded-md bg-zinc-800 text-zinc-100 p-3 overflow-y-auto min-h-[7.5em] max-h-[40vh]"
|
||||||
>
|
>
|
||||||
{status?.history_messages?.length ? (
|
{status?.history_messages?.length ? (
|
||||||
status.history_messages.map((msg, idx) => (
|
status.history_messages.map((msg, idx) => (
|
||||||
|
Reference in New Issue
Block a user