Merge pull request #1334 from danielaskdd/main

Refactoring entity and edge merging and add env FORCE_LLM_SUMMARY_ON_MERGE
This commit is contained in:
Daniel.y
2025-04-10 18:46:04 +08:00
committed by GitHub
9 changed files with 198 additions and 152 deletions

View File

@@ -43,11 +43,15 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
SUMMARY_LANGUAGE=English
# CHUNK_SIZE=1200
# CHUNK_OVERLAP_SIZE=100
### Max tokens for entity or relations summary
# MAX_TOKEN_SUMMARY=500
### Number of parallel processing documents in one patch
# MAX_PARALLEL_INSERT=2
### Max tokens for entity/relations description after merge
# MAX_TOKEN_SUMMARY=500
### Number of entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
# FORCE_LLM_SUMMARY_ON_MERGE=6
### Num of chunks send to Embedding in single request
# EMBEDDING_BATCH_NUM=32
### Max concurrency requests for Embedding

View File

@@ -1 +1 @@
__api_version__ = "0143"
__api_version__ = "0145"

View File

@@ -261,8 +261,12 @@ def display_splash_screen(args: argparse.Namespace) -> None:
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
ASCIIColors.yellow(f"{args.cosine_threshold}")
ASCIIColors.white(" ─ Top-K: ", end="")
ASCIIColors.white(" ─ Top-K: ", end="")
ASCIIColors.yellow(f"{args.top_k}")
ASCIIColors.white(" ├─ Max Token Summary: ", end="")
ASCIIColors.yellow(f"{int(os.getenv('MAX_TOKEN_SUMMARY', 500))}")
ASCIIColors.white(" └─ Force LLM Summary on Merge: ", end="")
ASCIIColors.yellow(f"{int(os.getenv('FORCE_LLM_SUMMARY_ON_MERGE', 6))}")
# System Configuration
ASCIIColors.magenta("\n💾 Storage Configuration:")

File diff suppressed because one or more lines are too long

View File

@@ -8,7 +8,7 @@
<link rel="icon" type="image/svg+xml" href="logo.png" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Lightrag</title>
<script type="module" crossorigin src="/webui/assets/index-Cicy56pP.js"></script>
<script type="module" crossorigin src="/webui/assets/index-BPm_J2w3.js"></script>
<link rel="stylesheet" crossorigin href="/webui/assets/index-CTB4Vp_z.css">
</head>
<body>

View File

@@ -103,8 +103,10 @@ class LightRAG:
entity_extract_max_gleaning: int = field(default=1)
"""Maximum number of entity extraction attempts for ambiguous content."""
entity_summary_to_max_tokens: int = field(
default=int(os.getenv("MAX_TOKEN_SUMMARY", 500))
summary_to_max_tokens: int = field(default=int(os.getenv("MAX_TOKEN_SUMMARY", 500)))
force_llm_summary_on_merge: int = field(
default=int(os.getenv("FORCE_LLM_SUMMARY_ON_MERGE", 6))
)
# Text chunking

View File

@@ -117,15 +117,13 @@ async def _handle_entity_relation_summary(
use_llm_func: callable = global_config["llm_model_func"]
llm_max_tokens = global_config["llm_model_max_token_size"]
tiktoken_model_name = global_config["tiktoken_model_name"]
summary_max_tokens = global_config["entity_summary_to_max_tokens"]
summary_max_tokens = global_config["summary_to_max_tokens"]
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
if len(tokens) < summary_max_tokens: # No need for summary
return description
prompt_template = PROMPTS["summarize_entity_descriptions"]
use_description = decode_tokens_by_tiktoken(
tokens[:llm_max_tokens], model_name=tiktoken_model_name
@@ -138,14 +136,6 @@ async def _handle_entity_relation_summary(
use_prompt = prompt_template.format(**context_base)
logger.debug(f"Trigger summary: {entity_or_relation_name}")
# Update pipeline status when LLM summary is needed
status_message = "Use LLM to re-summary description..."
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
# Use LLM function with cache
summary = await use_llm_func_with_cache(
use_prompt,
@@ -244,14 +234,6 @@ async def _merge_nodes_then_upsert(
already_node = await knowledge_graph_inst.get_node(entity_name)
if already_node is not None:
# Update pipeline status when a node that needs merging is found
status_message = f"Merging entity: {entity_name}"
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
already_entity_types.append(already_node["entity_type"])
already_source_ids.extend(
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
@@ -278,7 +260,19 @@ async def _merge_nodes_then_upsert(
set([dp["file_path"] for dp in nodes_data] + already_file_paths)
)
logger.debug(f"file_path: {file_path}")
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
num_new_fragment = len(set([dp["description"] for dp in nodes_data]))
if num_fragment > 1:
if num_fragment >= force_llm_summary_on_merge:
status_message = f"LLM merge N: {entity_name} | {num_new_fragment}+{num_fragment-num_new_fragment}"
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
description = await _handle_entity_relation_summary(
entity_name,
description,
@@ -287,6 +281,14 @@ async def _merge_nodes_then_upsert(
pipeline_status_lock,
llm_response_cache,
)
else:
status_message = f"Merge N: {entity_name} | {num_new_fragment}+{num_fragment-num_new_fragment}"
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
node_data = dict(
entity_id=entity_name,
entity_type=entity_type,
@@ -319,14 +321,6 @@ async def _merge_edges_then_upsert(
already_file_paths = []
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
# Update pipeline status when an edge that needs merging is found
status_message = f"Merging edge::: {src_id} - {tgt_id}"
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
# Handle the case where get_edge returns None or missing fields
if already_edge:
@@ -404,6 +398,22 @@ async def _merge_edges_then_upsert(
"file_path": file_path,
},
)
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
num_new_fragment = len(
set([dp["description"] for dp in edges_data if dp.get("description")])
)
if num_fragment > 1:
if num_fragment >= force_llm_summary_on_merge:
status_message = f"LLM merge E: {src_id} - {tgt_id} | {num_new_fragment}+{num_fragment-num_new_fragment}"
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
description = await _handle_entity_relation_summary(
f"({src_id}, {tgt_id})",
description,
@@ -412,6 +422,14 @@ async def _merge_edges_then_upsert(
pipeline_status_lock,
llm_response_cache,
)
else:
status_message = f"Merge E: {src_id} - {tgt_id} | {num_new_fragment}+{num_fragment-num_new_fragment}"
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
await knowledge_graph_inst.upsert_edge(
src_id,
tgt_id,
@@ -550,8 +568,10 @@ async def extract_entities(
Args:
chunk_key_dp (tuple[str, TextChunkSchema]):
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
Returns:
tuple: (maybe_nodes, maybe_edges) containing extracted entities and relationships
"""
nonlocal processed_chunks, total_entities_count, total_relations_count
nonlocal processed_chunks
chunk_key = chunk_key_dp[0]
chunk_dp = chunk_key_dp[1]
content = chunk_dp["content"]
@@ -623,13 +643,35 @@ async def extract_entities(
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Use graph database lock to ensure atomic merges and updates
chunk_entities_data = []
chunk_relationships_data = []
# Return the extracted nodes and edges for centralized processing
return maybe_nodes, maybe_edges
async with graph_db_lock:
# Process and update entities
# Handle all chunks in parallel and collect results
tasks = [_process_single_content(c) for c in ordered_chunks]
chunk_results = await asyncio.gather(*tasks)
# Collect all nodes and edges from all chunks
all_nodes = defaultdict(list)
all_edges = defaultdict(list)
for maybe_nodes, maybe_edges in chunk_results:
# Collect nodes
for entity_name, entities in maybe_nodes.items():
all_nodes[entity_name].extend(entities)
# Collect edges with sorted keys for undirected graph
for edge_key, edges in maybe_edges.items():
sorted_edge_key = tuple(sorted(edge_key))
all_edges[sorted_edge_key].extend(edges)
# Centralized processing of all nodes and edges
entities_data = []
relationships_data = []
# Use graph database lock to ensure atomic merges and updates
async with graph_db_lock:
# Process and update all entities at once
for entity_name, entities in all_nodes.items():
entity_data = await _merge_nodes_then_upsert(
entity_name,
entities,
@@ -639,15 +681,13 @@ async def extract_entities(
pipeline_status_lock,
llm_response_cache,
)
chunk_entities_data.append(entity_data)
entities_data.append(entity_data)
# Process and update relationships
for edge_key, edges in maybe_edges.items():
# Ensure edge direction consistency
sorted_edge_key = tuple(sorted(edge_key))
# Process and update all relationships at once
for edge_key, edges in all_edges.items():
edge_data = await _merge_edges_then_upsert(
sorted_edge_key[0],
sorted_edge_key[1],
edge_key[0],
edge_key[1],
edges,
knowledge_graph_inst,
global_config,
@@ -655,10 +695,10 @@ async def extract_entities(
pipeline_status_lock,
llm_response_cache,
)
chunk_relationships_data.append(edge_data)
relationships_data.append(edge_data)
# Update vector database (within the same lock to ensure atomicity)
if entity_vdb is not None and chunk_entities_data:
# Update vector databases with all collected data
if entity_vdb is not None and entities_data:
data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"entity_name": dp["entity_name"],
@@ -667,11 +707,11 @@ async def extract_entities(
"source_id": dp["source_id"],
"file_path": dp.get("file_path", "unknown_source"),
}
for dp in chunk_entities_data
for dp in entities_data
}
await entity_vdb.upsert(data_for_vdb)
if relationships_vdb is not None and chunk_relationships_data:
if relationships_vdb is not None and relationships_data:
data_for_vdb = {
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
@@ -681,17 +721,13 @@ async def extract_entities(
"source_id": dp["source_id"],
"file_path": dp.get("file_path", "unknown_source"),
}
for dp in chunk_relationships_data
for dp in relationships_data
}
await relationships_vdb.upsert(data_for_vdb)
# Update counters
total_entities_count += len(chunk_entities_data)
total_relations_count += len(chunk_relationships_data)
# Handle all chunks in parallel
tasks = [_process_single_content(c) for c in ordered_chunks]
await asyncio.gather(*tasks)
# Update total counts
total_entities_count = len(entities_data)
total_relations_count = len(relationships_data)
log_message = f"Extracted {total_entities_count} entities + {total_relations_count} relationships (total)"
logger.info(log_message)

View File

@@ -967,7 +967,7 @@ async def use_llm_func_with_cache(
res: str = await use_llm_func(input_text, **kwargs)
# Save to cache
logger.info(f"Saving LLM cache for {arg_hash}")
logger.info(f" == LLM cache == saving {arg_hash}")
await save_to_cache(
llm_response_cache,
CacheData(

View File

@@ -166,7 +166,7 @@ export default function PipelineStatusDialog({
{/* Latest Message */}
<div className="space-y-2">
<div className="text-sm font-medium">{t('documentPanel.pipelineStatus.latestMessage')}:</div>
<div className="font-mono text-sm rounded-md bg-zinc-800 text-zinc-100 p-3">
<div className="font-mono text-xs rounded-md bg-zinc-800 text-zinc-100 p-3">
{status?.latest_message || '-'}
</div>
</div>
@@ -177,7 +177,7 @@ export default function PipelineStatusDialog({
<div
ref={historyRef}
onScroll={handleScroll}
className="font-mono text-sm rounded-md bg-zinc-800 text-zinc-100 p-3 overflow-y-auto min-h-[7.5em] max-h-[40vh]"
className="font-mono text-xs rounded-md bg-zinc-800 text-zinc-100 p-3 overflow-y-auto min-h-[7.5em] max-h-[40vh]"
>
{status?.history_messages?.length ? (
status.history_messages.map((msg, idx) => (