Merge branch 'feat-node-expand' into webui-node-expansion
This commit is contained in:
@@ -1061,7 +1061,7 @@ Valid modes are:
|
|||||||
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
||||||
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
||||||
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`(default value changed by env var MAX_TOKENS) |
|
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`(default value changed by env var MAX_TOKENS) |
|
||||||
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `16`(default value changed by env var MAX_ASYNC) |
|
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `4`(default value changed by env var MAX_ASYNC) |
|
||||||
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
|
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
|
||||||
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval. | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval. | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
||||||
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
||||||
|
@@ -50,7 +50,8 @@
|
|||||||
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
||||||
# SUMMARY_LANGUAGE=English
|
# SUMMARY_LANGUAGE=English
|
||||||
# MAX_EMBED_TOKENS=8192
|
# MAX_EMBED_TOKENS=8192
|
||||||
# ENABLE_LLM_CACHE_FOR_EXTRACT=false # Enable LLM cache for entity extraction, defaults to false
|
# ENABLE_LLM_CACHE_FOR_EXTRACT=true # Enable LLM cache for entity extraction
|
||||||
|
# MAX_PARALLEL_INSERT=2 # Maximum number of parallel processing documents in pipeline
|
||||||
|
|
||||||
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
||||||
LLM_BINDING=ollama
|
LLM_BINDING=ollama
|
||||||
|
@@ -224,7 +224,7 @@ LightRAG supports binding to various LLM/Embedding backends:
|
|||||||
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select LLM backend type.
|
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select LLM backend type.
|
||||||
|
|
||||||
### Entity Extraction Configuration
|
### Entity Extraction Configuration
|
||||||
* ENABLE_LLM_CACHE_FOR_EXTRACT: Enable LLM cache for entity extraction (default: false)
|
* ENABLE_LLM_CACHE_FOR_EXTRACT: Enable LLM cache for entity extraction (default: true)
|
||||||
|
|
||||||
It's very common to set `ENABLE_LLM_CACHE_FOR_EXTRACT` to true for test environment to reduce the cost of LLM calls.
|
It's very common to set `ENABLE_LLM_CACHE_FOR_EXTRACT` to true for test environment to reduce the cost of LLM calls.
|
||||||
|
|
||||||
|
@@ -141,7 +141,7 @@ Start the LightRAG server using specified options:
|
|||||||
lightrag-server --port 9621 --key sk-somepassword --kv-storage PGKVStorage --graph-storage PGGraphStorage --vector-storage PGVectorStorage --doc-status-storage PGDocStatusStorage
|
lightrag-server --port 9621 --key sk-somepassword --kv-storage PGKVStorage --graph-storage PGGraphStorage --vector-storage PGVectorStorage --doc-status-storage PGDocStatusStorage
|
||||||
```
|
```
|
||||||
|
|
||||||
Replace `the-port-number` with your desired port number (default is 9621) and `your-secret-key` with a secure key.
|
Replace the `port` number with your desired port number (default is 9621) and `your-secret-key` with a secure key.
|
||||||
|
|
||||||
## Conclusion
|
## Conclusion
|
||||||
|
|
||||||
|
@@ -364,7 +364,7 @@ def parse_args(is_uvicorn_mode: bool = False) -> argparse.Namespace:
|
|||||||
|
|
||||||
# Inject LLM cache configuration
|
# Inject LLM cache configuration
|
||||||
args.enable_llm_cache_for_extract = get_env_value(
|
args.enable_llm_cache_for_extract = get_env_value(
|
||||||
"ENABLE_LLM_CACHE_FOR_EXTRACT", False, bool
|
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
|
||||||
)
|
)
|
||||||
|
|
||||||
# Select Document loading tool (DOCLING, DEFAULT)
|
# Select Document loading tool (DOCLING, DEFAULT)
|
||||||
|
File diff suppressed because one or more lines are too long
@@ -8,7 +8,7 @@
|
|||||||
<link rel="icon" type="image/svg+xml" href="./logo.png" />
|
<link rel="icon" type="image/svg+xml" href="./logo.png" />
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||||
<title>Lightrag</title>
|
<title>Lightrag</title>
|
||||||
<script type="module" crossorigin src="./assets/index-B_8hp7Xk.js"></script>
|
<script type="module" crossorigin src="./assets/index-nzv8EoUv.js"></script>
|
||||||
<link rel="stylesheet" crossorigin href="./assets/index-TPDyec81.css">
|
<link rel="stylesheet" crossorigin href="./assets/index-TPDyec81.css">
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
|
@@ -755,7 +755,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||||||
result = await self.db.query(sql, params, True)
|
result = await self.db.query(sql, params, True)
|
||||||
docs_by_status = {
|
docs_by_status = {
|
||||||
element["id"]: DocProcessingStatus(
|
element["id"]: DocProcessingStatus(
|
||||||
content=result[0]["content"],
|
content=element["content"],
|
||||||
content_summary=element["content_summary"],
|
content_summary=element["content_summary"],
|
||||||
content_length=element["content_length"],
|
content_length=element["content_length"],
|
||||||
status=element["status"],
|
status=element["status"],
|
||||||
@@ -1556,7 +1556,7 @@ TABLES = {
|
|||||||
content_vector VECTOR,
|
content_vector VECTOR,
|
||||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||||
update_time TIMESTAMP,
|
update_time TIMESTAMP,
|
||||||
chunk_id VARCHAR(255) NULL,
|
chunk_id TEXT NULL,
|
||||||
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
||||||
)"""
|
)"""
|
||||||
},
|
},
|
||||||
@@ -1570,7 +1570,7 @@ TABLES = {
|
|||||||
content_vector VECTOR,
|
content_vector VECTOR,
|
||||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||||
update_time TIMESTAMP,
|
update_time TIMESTAMP,
|
||||||
chunk_id VARCHAR(255) NULL,
|
chunk_id TEXT NULL,
|
||||||
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
||||||
)"""
|
)"""
|
||||||
},
|
},
|
||||||
|
@@ -214,7 +214,7 @@ class LightRAG:
|
|||||||
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
|
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
|
||||||
"""Maximum number of tokens allowed per LLM response."""
|
"""Maximum number of tokens allowed per LLM response."""
|
||||||
|
|
||||||
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 16)))
|
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 4)))
|
||||||
"""Maximum number of concurrent LLM calls."""
|
"""Maximum number of concurrent LLM calls."""
|
||||||
|
|
||||||
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||||
@@ -238,7 +238,7 @@ class LightRAG:
|
|||||||
# Extensions
|
# Extensions
|
||||||
# ---
|
# ---
|
||||||
|
|
||||||
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 20)))
|
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 2)))
|
||||||
"""Maximum number of parallel insert operations."""
|
"""Maximum number of parallel insert operations."""
|
||||||
|
|
||||||
addon_params: dict[str, Any] = field(
|
addon_params: dict[str, Any] = field(
|
||||||
@@ -553,6 +553,7 @@ class LightRAG:
|
|||||||
Args:
|
Args:
|
||||||
input: Single document string or list of document strings
|
input: Single document string or list of document strings
|
||||||
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
||||||
|
chunk_token_size, it will be split again by token size.
|
||||||
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
||||||
split_by_character is None, this parameter is ignored.
|
split_by_character is None, this parameter is ignored.
|
||||||
ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
||||||
@@ -574,6 +575,7 @@ class LightRAG:
|
|||||||
Args:
|
Args:
|
||||||
input: Single document string or list of document strings
|
input: Single document string or list of document strings
|
||||||
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
||||||
|
chunk_token_size, it will be split again by token size.
|
||||||
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
||||||
split_by_character is None, this parameter is ignored.
|
split_by_character is None, this parameter is ignored.
|
||||||
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
||||||
@@ -767,7 +769,6 @@ class LightRAG:
|
|||||||
async with pipeline_status_lock:
|
async with pipeline_status_lock:
|
||||||
# Ensure only one worker is processing documents
|
# Ensure only one worker is processing documents
|
||||||
if not pipeline_status.get("busy", False):
|
if not pipeline_status.get("busy", False):
|
||||||
# 先检查是否有需要处理的文档
|
|
||||||
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
||||||
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
||||||
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
||||||
@@ -779,12 +780,10 @@ class LightRAG:
|
|||||||
to_process_docs.update(failed_docs)
|
to_process_docs.update(failed_docs)
|
||||||
to_process_docs.update(pending_docs)
|
to_process_docs.update(pending_docs)
|
||||||
|
|
||||||
# 如果没有需要处理的文档,直接返回,保留 pipeline_status 中的内容不变
|
|
||||||
if not to_process_docs:
|
if not to_process_docs:
|
||||||
logger.info("No documents to process")
|
logger.info("No documents to process")
|
||||||
return
|
return
|
||||||
|
|
||||||
# 有文档需要处理,更新 pipeline_status
|
|
||||||
pipeline_status.update(
|
pipeline_status.update(
|
||||||
{
|
{
|
||||||
"busy": True,
|
"busy": True,
|
||||||
@@ -823,7 +822,7 @@ class LightRAG:
|
|||||||
for i in range(0, len(to_process_docs), self.max_parallel_insert)
|
for i in range(0, len(to_process_docs), self.max_parallel_insert)
|
||||||
]
|
]
|
||||||
|
|
||||||
log_message = f"Number of batches to process: {len(docs_batches)}."
|
log_message = f"Processing {len(to_process_docs)} document(s) in {len(docs_batches)} batches"
|
||||||
logger.info(log_message)
|
logger.info(log_message)
|
||||||
|
|
||||||
# Update pipeline status with current batch information
|
# Update pipeline status with current batch information
|
||||||
@@ -832,140 +831,149 @@ class LightRAG:
|
|||||||
pipeline_status["latest_message"] = log_message
|
pipeline_status["latest_message"] = log_message
|
||||||
pipeline_status["history_messages"].append(log_message)
|
pipeline_status["history_messages"].append(log_message)
|
||||||
|
|
||||||
batches: list[Any] = []
|
async def process_document(
|
||||||
# 3. iterate over batches
|
doc_id: str,
|
||||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
status_doc: DocProcessingStatus,
|
||||||
# Update current batch in pipeline status (directly, as it's atomic)
|
split_by_character: str | None,
|
||||||
pipeline_status["cur_batch"] += 1
|
split_by_character_only: bool,
|
||||||
|
pipeline_status: dict,
|
||||||
async def batch(
|
pipeline_status_lock: asyncio.Lock,
|
||||||
batch_idx: int,
|
) -> None:
|
||||||
docs_batch: list[tuple[str, DocProcessingStatus]],
|
"""Process single document"""
|
||||||
size_batch: int,
|
try:
|
||||||
) -> None:
|
# Generate chunks from document
|
||||||
log_message = (
|
chunks: dict[str, Any] = {
|
||||||
f"Start processing batch {batch_idx + 1} of {size_batch}."
|
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||||
)
|
**dp,
|
||||||
logger.info(log_message)
|
"full_doc_id": doc_id,
|
||||||
pipeline_status["latest_message"] = log_message
|
|
||||||
pipeline_status["history_messages"].append(log_message)
|
|
||||||
# 4. iterate over batch
|
|
||||||
for doc_id_processing_status in docs_batch:
|
|
||||||
doc_id, status_doc = doc_id_processing_status
|
|
||||||
# Generate chunks from document
|
|
||||||
chunks: dict[str, Any] = {
|
|
||||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
|
||||||
**dp,
|
|
||||||
"full_doc_id": doc_id,
|
|
||||||
}
|
|
||||||
for dp in self.chunking_func(
|
|
||||||
status_doc.content,
|
|
||||||
split_by_character,
|
|
||||||
split_by_character_only,
|
|
||||||
self.chunk_overlap_token_size,
|
|
||||||
self.chunk_token_size,
|
|
||||||
self.tiktoken_model_name,
|
|
||||||
)
|
|
||||||
}
|
}
|
||||||
# Process document (text chunks and full docs) in parallel
|
for dp in self.chunking_func(
|
||||||
# Create tasks with references for potential cancellation
|
status_doc.content,
|
||||||
doc_status_task = asyncio.create_task(
|
split_by_character,
|
||||||
self.doc_status.upsert(
|
split_by_character_only,
|
||||||
{
|
self.chunk_overlap_token_size,
|
||||||
doc_id: {
|
self.chunk_token_size,
|
||||||
"status": DocStatus.PROCESSING,
|
self.tiktoken_model_name,
|
||||||
"updated_at": datetime.now().isoformat(),
|
)
|
||||||
"content": status_doc.content,
|
}
|
||||||
"content_summary": status_doc.content_summary,
|
# Process document (text chunks and full docs) in parallel
|
||||||
"content_length": status_doc.content_length,
|
# Create tasks with references for potential cancellation
|
||||||
"created_at": status_doc.created_at,
|
doc_status_task = asyncio.create_task(
|
||||||
}
|
self.doc_status.upsert(
|
||||||
|
{
|
||||||
|
doc_id: {
|
||||||
|
"status": DocStatus.PROCESSING,
|
||||||
|
"updated_at": datetime.now().isoformat(),
|
||||||
|
"content": status_doc.content,
|
||||||
|
"content_summary": status_doc.content_summary,
|
||||||
|
"content_length": status_doc.content_length,
|
||||||
|
"created_at": status_doc.created_at,
|
||||||
}
|
}
|
||||||
)
|
}
|
||||||
)
|
)
|
||||||
chunks_vdb_task = asyncio.create_task(
|
)
|
||||||
self.chunks_vdb.upsert(chunks)
|
chunks_vdb_task = asyncio.create_task(
|
||||||
|
self.chunks_vdb.upsert(chunks)
|
||||||
|
)
|
||||||
|
entity_relation_task = asyncio.create_task(
|
||||||
|
self._process_entity_relation_graph(
|
||||||
|
chunks, pipeline_status, pipeline_status_lock
|
||||||
)
|
)
|
||||||
entity_relation_task = asyncio.create_task(
|
)
|
||||||
self._process_entity_relation_graph(
|
full_docs_task = asyncio.create_task(
|
||||||
chunks, pipeline_status, pipeline_status_lock
|
self.full_docs.upsert(
|
||||||
)
|
{doc_id: {"content": status_doc.content}}
|
||||||
)
|
)
|
||||||
full_docs_task = asyncio.create_task(
|
)
|
||||||
self.full_docs.upsert(
|
text_chunks_task = asyncio.create_task(
|
||||||
{doc_id: {"content": status_doc.content}}
|
self.text_chunks.upsert(chunks)
|
||||||
)
|
)
|
||||||
)
|
tasks = [
|
||||||
text_chunks_task = asyncio.create_task(
|
doc_status_task,
|
||||||
self.text_chunks.upsert(chunks)
|
chunks_vdb_task,
|
||||||
)
|
entity_relation_task,
|
||||||
tasks = [
|
full_docs_task,
|
||||||
doc_status_task,
|
text_chunks_task,
|
||||||
|
]
|
||||||
|
await asyncio.gather(*tasks)
|
||||||
|
await self.doc_status.upsert(
|
||||||
|
{
|
||||||
|
doc_id: {
|
||||||
|
"status": DocStatus.PROCESSED,
|
||||||
|
"chunks_count": len(chunks),
|
||||||
|
"content": status_doc.content,
|
||||||
|
"content_summary": status_doc.content_summary,
|
||||||
|
"content_length": status_doc.content_length,
|
||||||
|
"created_at": status_doc.created_at,
|
||||||
|
"updated_at": datetime.now().isoformat(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
# Log error and update pipeline status
|
||||||
|
error_msg = f"Failed to process document {doc_id}: {str(e)}"
|
||||||
|
logger.error(error_msg)
|
||||||
|
async with pipeline_status_lock:
|
||||||
|
pipeline_status["latest_message"] = error_msg
|
||||||
|
pipeline_status["history_messages"].append(error_msg)
|
||||||
|
|
||||||
|
# Cancel other tasks as they are no longer meaningful
|
||||||
|
for task in [
|
||||||
chunks_vdb_task,
|
chunks_vdb_task,
|
||||||
entity_relation_task,
|
entity_relation_task,
|
||||||
full_docs_task,
|
full_docs_task,
|
||||||
text_chunks_task,
|
text_chunks_task,
|
||||||
]
|
]:
|
||||||
try:
|
if not task.done():
|
||||||
await asyncio.gather(*tasks)
|
task.cancel()
|
||||||
await self.doc_status.upsert(
|
# Update document status to failed
|
||||||
{
|
await self.doc_status.upsert(
|
||||||
doc_id: {
|
{
|
||||||
"status": DocStatus.PROCESSED,
|
doc_id: {
|
||||||
"chunks_count": len(chunks),
|
"status": DocStatus.FAILED,
|
||||||
"content": status_doc.content,
|
"error": str(e),
|
||||||
"content_summary": status_doc.content_summary,
|
"content": status_doc.content,
|
||||||
"content_length": status_doc.content_length,
|
"content_summary": status_doc.content_summary,
|
||||||
"created_at": status_doc.created_at,
|
"content_length": status_doc.content_length,
|
||||||
"updated_at": datetime.now().isoformat(),
|
"created_at": status_doc.created_at,
|
||||||
}
|
"updated_at": datetime.now().isoformat(),
|
||||||
}
|
}
|
||||||
)
|
}
|
||||||
except Exception as e:
|
|
||||||
# Log error and update pipeline status
|
|
||||||
error_msg = (
|
|
||||||
f"Failed to process document {doc_id}: {str(e)}"
|
|
||||||
)
|
|
||||||
logger.error(error_msg)
|
|
||||||
pipeline_status["latest_message"] = error_msg
|
|
||||||
pipeline_status["history_messages"].append(error_msg)
|
|
||||||
|
|
||||||
# Cancel other tasks as they are no longer meaningful
|
|
||||||
for task in [
|
|
||||||
chunks_vdb_task,
|
|
||||||
entity_relation_task,
|
|
||||||
full_docs_task,
|
|
||||||
text_chunks_task,
|
|
||||||
]:
|
|
||||||
if not task.done():
|
|
||||||
task.cancel()
|
|
||||||
|
|
||||||
# Update document status to failed
|
|
||||||
await self.doc_status.upsert(
|
|
||||||
{
|
|
||||||
doc_id: {
|
|
||||||
"status": DocStatus.FAILED,
|
|
||||||
"error": str(e),
|
|
||||||
"content": status_doc.content,
|
|
||||||
"content_summary": status_doc.content_summary,
|
|
||||||
"content_length": status_doc.content_length,
|
|
||||||
"created_at": status_doc.created_at,
|
|
||||||
"updated_at": datetime.now().isoformat(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
continue
|
|
||||||
log_message = (
|
|
||||||
f"Completed batch {batch_idx + 1} of {len(docs_batches)}."
|
|
||||||
)
|
)
|
||||||
logger.info(log_message)
|
|
||||||
pipeline_status["latest_message"] = log_message
|
|
||||||
pipeline_status["history_messages"].append(log_message)
|
|
||||||
|
|
||||||
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
|
# 3. iterate over batches
|
||||||
|
total_batches = len(docs_batches)
|
||||||
|
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||||
|
current_batch = batch_idx + 1
|
||||||
|
log_message = (
|
||||||
|
f"Start processing batch {current_batch} of {total_batches}."
|
||||||
|
)
|
||||||
|
logger.info(log_message)
|
||||||
|
pipeline_status["cur_batch"] = current_batch
|
||||||
|
pipeline_status["latest_message"] = log_message
|
||||||
|
pipeline_status["history_messages"].append(log_message)
|
||||||
|
|
||||||
await asyncio.gather(*batches)
|
doc_tasks = []
|
||||||
await self._insert_done()
|
for doc_id, status_doc in docs_batch:
|
||||||
|
doc_tasks.append(
|
||||||
|
process_document(
|
||||||
|
doc_id,
|
||||||
|
status_doc,
|
||||||
|
split_by_character,
|
||||||
|
split_by_character_only,
|
||||||
|
pipeline_status,
|
||||||
|
pipeline_status_lock,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process documents in one batch parallelly
|
||||||
|
await asyncio.gather(*doc_tasks)
|
||||||
|
await self._insert_done()
|
||||||
|
|
||||||
|
log_message = f"Completed batch {current_batch} of {total_batches}."
|
||||||
|
logger.info(log_message)
|
||||||
|
pipeline_status["latest_message"] = log_message
|
||||||
|
pipeline_status["history_messages"].append(log_message)
|
||||||
|
|
||||||
# Check if there's a pending request to process more documents (with lock)
|
# Check if there's a pending request to process more documents (with lock)
|
||||||
has_pending_request = False
|
has_pending_request = False
|
||||||
@@ -1040,7 +1048,7 @@ class LightRAG:
|
|||||||
]
|
]
|
||||||
await asyncio.gather(*tasks)
|
await asyncio.gather(*tasks)
|
||||||
|
|
||||||
log_message = "All Insert done"
|
log_message = "In memory DB persist to disk"
|
||||||
logger.info(log_message)
|
logger.info(log_message)
|
||||||
|
|
||||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||||
|
@@ -56,24 +56,24 @@ function App() {
|
|||||||
return (
|
return (
|
||||||
<ThemeProvider>
|
<ThemeProvider>
|
||||||
<TabVisibilityProvider>
|
<TabVisibilityProvider>
|
||||||
<main className="flex h-screen w-screen overflow-x-hidden">
|
<main className="flex h-screen w-screen overflow-hidden">
|
||||||
<Tabs
|
<Tabs
|
||||||
defaultValue={currentTab}
|
defaultValue={currentTab}
|
||||||
className="!m-0 flex grow flex-col !p-0"
|
className="!m-0 flex grow flex-col !p-0 overflow-hidden"
|
||||||
onValueChange={handleTabChange}
|
onValueChange={handleTabChange}
|
||||||
>
|
>
|
||||||
<SiteHeader />
|
<SiteHeader />
|
||||||
<div className="relative grow">
|
<div className="relative grow">
|
||||||
<TabsContent value="documents" className="absolute top-0 right-0 bottom-0 left-0">
|
<TabsContent value="documents" className="absolute top-0 right-0 bottom-0 left-0 overflow-auto">
|
||||||
<DocumentManager />
|
<DocumentManager />
|
||||||
</TabsContent>
|
</TabsContent>
|
||||||
<TabsContent value="knowledge-graph" className="absolute top-0 right-0 bottom-0 left-0">
|
<TabsContent value="knowledge-graph" className="absolute top-0 right-0 bottom-0 left-0 overflow-hidden">
|
||||||
<GraphViewer />
|
<GraphViewer />
|
||||||
</TabsContent>
|
</TabsContent>
|
||||||
<TabsContent value="retrieval" className="absolute top-0 right-0 bottom-0 left-0">
|
<TabsContent value="retrieval" className="absolute top-0 right-0 bottom-0 left-0 overflow-hidden">
|
||||||
<RetrievalTesting />
|
<RetrievalTesting />
|
||||||
</TabsContent>
|
</TabsContent>
|
||||||
<TabsContent value="api" className="absolute top-0 right-0 bottom-0 left-0">
|
<TabsContent value="api" className="absolute top-0 right-0 bottom-0 left-0 overflow-hidden">
|
||||||
<ApiSite />
|
<ApiSite />
|
||||||
</TabsContent>
|
</TabsContent>
|
||||||
</div>
|
</div>
|
||||||
|
@@ -182,7 +182,7 @@ const GraphViewer = () => {
|
|||||||
|
|
||||||
// Always render SigmaContainer but control its visibility with CSS
|
// Always render SigmaContainer but control its visibility with CSS
|
||||||
return (
|
return (
|
||||||
<div className="relative h-full w-full">
|
<div className="relative h-full w-full overflow-hidden">
|
||||||
<SigmaContainer
|
<SigmaContainer
|
||||||
settings={sigmaSettings}
|
settings={sigmaSettings}
|
||||||
className="!bg-background !size-full overflow-hidden"
|
className="!bg-background !size-full overflow-hidden"
|
||||||
|
@@ -112,7 +112,7 @@ export default function RetrievalTesting() {
|
|||||||
}, [setMessages])
|
}, [setMessages])
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div className="flex size-full gap-2 px-2 pb-12">
|
<div className="flex size-full gap-2 px-2 pb-12 overflow-hidden">
|
||||||
<div className="flex grow flex-col gap-4">
|
<div className="flex grow flex-col gap-4">
|
||||||
<div className="relative grow">
|
<div className="relative grow">
|
||||||
<div className="bg-primary-foreground/60 absolute inset-0 flex flex-col overflow-auto rounded-lg border p-2">
|
<div className="bg-primary-foreground/60 absolute inset-0 flex flex-col overflow-auto rounded-lg border p-2">
|
||||||
|
Reference in New Issue
Block a user