Merge branch 'main' into graph-viewer-webui

This commit is contained in:
ArnoChen
2025-02-10 13:56:25 +08:00
12 changed files with 344 additions and 225 deletions

View File

@@ -1,16 +1,16 @@
import asyncio
import os
from dataclasses import dataclass
from typing import Any
from typing import Any, Union
from lightrag.utils import (
logger,
load_json,
write_json,
)
from lightrag.base import (
BaseKVStorage,
)
from lightrag.utils import (
load_json,
logger,
write_json,
)
@dataclass
@@ -25,8 +25,8 @@ class JsonKVStorage(BaseKVStorage):
async def index_done_callback(self):
write_json(self._data, self._file_name)
async def get_by_id(self, id: str) -> dict[str, Any]:
return self._data.get(id, {})
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.get(id)
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return [
@@ -38,8 +38,8 @@ class JsonKVStorage(BaseKVStorage):
for id in ids
]
async def filter_keys(self, data: list[str]) -> set[str]:
return set([s for s in data if s not in self._data])
async def filter_keys(self, data: set[str]) -> set[str]:
return set(data) - set(self._data.keys())
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
left_data = {k: v for k, v in data.items() if k not in self._data}

View File

@@ -48,21 +48,20 @@ Usage:
"""
import os
from dataclasses import dataclass
import os
from typing import Any, Union
from lightrag.utils import (
logger,
load_json,
write_json,
)
from lightrag.base import (
DocStatus,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
)
from lightrag.utils import (
load_json,
logger,
write_json,
)
@dataclass
@@ -75,15 +74,17 @@ class JsonDocStatusStorage(DocStatusStorage):
self._data: dict[str, Any] = load_json(self._file_name) or {}
logger.info(f"Loaded document status storage with {len(self._data)} records")
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
"""Return keys that should be processed (not in storage or not successfully processed)"""
return set(
[
k
for k in data
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED
]
)
return set(data) - set(self._data.keys())
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
result: list[dict[str, Any]] = []
for id in ids:
data = self._data.get(id, None)
if data:
result.append(data)
return result
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
@@ -94,11 +95,19 @@ class JsonDocStatusStorage(DocStatusStorage):
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
"""Get all failed documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.FAILED}
return {
k: DocProcessingStatus(**v)
for k, v in self._data.items()
if v["status"] == DocStatus.FAILED
}
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
"""Get all pending documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.PENDING}
return {
k: DocProcessingStatus(**v)
for k, v in self._data.items()
if v["status"] == DocStatus.PENDING
}
async def index_done_callback(self):
"""Save data to file after indexing"""
@@ -113,12 +122,8 @@ class JsonDocStatusStorage(DocStatusStorage):
self._data.update(data)
await self.index_done_callback()
async def get_by_id(self, id: str) -> dict[str, Any]:
return self._data.get(id, {})
async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]:
"""Get document status by ID"""
return self._data.get(doc_id)
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.get(id)
async def delete(self, doc_ids: list[str]):
"""Delete document status by IDs"""

View File

@@ -1,8 +1,9 @@
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import pipmaster as pm
import numpy as np
import pipmaster as pm
from tqdm.asyncio import tqdm as tqdm_async
if not pm.is_installed("pymongo"):
pm.install("pymongo")
@@ -10,13 +11,14 @@ if not pm.is_installed("pymongo"):
if not pm.is_installed("motor"):
pm.install("motor")
from pymongo import MongoClient
from motor.motor_asyncio import AsyncIOMotorClient
from typing import Any, Union, List, Tuple
from typing import Any, List, Tuple, Union
from ..utils import logger
from ..base import BaseKVStorage, BaseGraphStorage
from motor.motor_asyncio import AsyncIOMotorClient
from pymongo import MongoClient
from ..base import BaseGraphStorage, BaseKVStorage
from ..namespace import NameSpace, is_namespace
from ..utils import logger
@dataclass
@@ -29,13 +31,13 @@ class MongoKVStorage(BaseKVStorage):
self._data = database.get_collection(self.namespace)
logger.info(f"Use MongoDB as KV {self.namespace}")
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return list(self._data.find({"_id": {"$in": ids}}))
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
existing_ids = [
str(x["_id"]) for x in self._data.find({"_id": {"$in": data}}, {"_id": 1})
]
@@ -170,7 +172,6 @@ class MongoGraphStorage(BaseGraphStorage):
But typically for a direct edge, we might just do a find_one.
Below is a demonstration approach.
"""
# We can do a single-hop graphLookup (maxDepth=0 or 1).
# Then check if the target_node appears among the edges array.
pipeline = [

View File

@@ -1,27 +1,28 @@
import os
import array
import asyncio
import os
# import html
# import os
from dataclasses import dataclass
from typing import Any, Union
import numpy as np
import array
import pipmaster as pm
if not pm.is_installed("oracledb"):
pm.install("oracledb")
from ..utils import logger
import oracledb
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
)
from ..namespace import NameSpace, is_namespace
import oracledb
from ..utils import logger
class OracleDB:
@@ -107,7 +108,7 @@ class OracleDB:
"SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only"
)
else:
await self.query("SELECT 1 FROM {k}".format(k=k))
await self.query(f"SELECT 1 FROM {k}")
except Exception as e:
logger.error(f"Failed to check table {k} in Oracle database")
logger.error(f"Oracle database error: {e}")
@@ -181,8 +182,8 @@ class OracleKVStorage(BaseKVStorage):
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any]:
"""get doc_full data based on id."""
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Get doc_full data based on id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
# print("get_by_id:"+SQL)
@@ -191,7 +192,10 @@ class OracleKVStorage(BaseKVStorage):
res = {}
for row in array_res:
res[row["id"]] = row
return res
if res:
return res
else:
return None
else:
return await self.db.query(SQL, params)
@@ -209,7 +213,7 @@ class OracleKVStorage(BaseKVStorage):
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""get doc_chunks data based on id"""
"""Get doc_chunks data based on id"""
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)

View File

@@ -4,34 +4,35 @@ import json
import os
import time
from dataclasses import dataclass
from typing import Union, List, Dict, Set, Any, Tuple
import numpy as np
from typing import Any, Dict, List, Set, Tuple, Union
import numpy as np
import pipmaster as pm
if not pm.is_installed("asyncpg"):
pm.install("asyncpg")
import asyncpg
import sys
from tqdm.asyncio import tqdm as tqdm_async
import asyncpg
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from tqdm.asyncio import tqdm as tqdm_async
from ..utils import logger
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocStatusStorage,
DocStatus,
DocProcessingStatus,
BaseGraphStorage,
DocStatus,
DocStatusStorage,
)
from ..namespace import NameSpace, is_namespace
from ..utils import logger
if sys.platform.startswith("win"):
import asyncio.windows_events
@@ -82,7 +83,7 @@ class PostgreSQLDB:
async def check_tables(self):
for k, v in TABLES.items():
try:
await self.query("SELECT 1 FROM {k} LIMIT 1".format(k=k))
await self.query(f"SELECT 1 FROM {k} LIMIT 1")
except Exception as e:
logger.error(f"Failed to check table {k} in PostgreSQL database")
logger.error(f"PostgreSQL database error: {e}")
@@ -183,7 +184,7 @@ class PGKVStorage(BaseKVStorage):
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Get doc_full data by id."""
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
@@ -192,9 +193,10 @@ class PGKVStorage(BaseKVStorage):
res = {}
for row in array_res:
res[row["id"]] = row
return res
return res if res else None
else:
return await self.db.query(sql, params)
response = await self.db.query(sql, params)
return response if response else None
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
"""Specifically for llm_response_cache."""
@@ -421,7 +423,7 @@ class PGDocStatusStorage(DocStatusStorage):
def __post_init__(self):
pass
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
"""Return keys that don't exist in storage"""
keys = ",".join([f"'{_id}'" for _id in data])
sql = (
@@ -435,12 +437,12 @@ class PGDocStatusStorage(DocStatusStorage):
existed = set([element["id"] for element in result])
return set(data) - existed
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and id=$2"
params = {"workspace": self.db.workspace, "id": id}
result = await self.db.query(sql, params, True)
if result is None or result == []:
return {}
return None
else:
return DocProcessingStatus(
content=result[0]["content"],

127
lightrag/kg/qdrant_impl.py Normal file
View File

@@ -0,0 +1,127 @@
import asyncio
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import numpy as np
import hashlib
import uuid
from ..utils import logger
from ..base import BaseVectorStorage
import pipmaster as pm
if not pm.is_installed("qdrant_client"):
pm.install("qdrant_client")
from qdrant_client import QdrantClient, models
def compute_mdhash_id_for_qdrant(
content: str, prefix: str = "", style: str = "simple"
) -> str:
"""
Generate a UUID based on the content and support multiple formats.
:param content: The content used to generate the UUID.
:param style: The format of the UUID, optional values are "simple", "hyphenated", "urn".
:return: A UUID that meets the requirements of Qdrant.
"""
if not content:
raise ValueError("Content must not be empty.")
# Use the hash value of the content to create a UUID.
hashed_content = hashlib.sha256((prefix + content).encode("utf-8")).digest()
generated_uuid = uuid.UUID(bytes=hashed_content[:16], version=4)
# Return the UUID according to the specified format.
if style == "simple":
return generated_uuid.hex
elif style == "hyphenated":
return str(generated_uuid)
elif style == "urn":
return f"urn:uuid:{generated_uuid}"
else:
raise ValueError("Invalid style. Choose from 'simple', 'hyphenated', or 'urn'.")
@dataclass
class QdrantVectorDBStorage(BaseVectorStorage):
@staticmethod
def create_collection_if_not_exist(
client: QdrantClient, collection_name: str, **kwargs
):
if client.collection_exists(collection_name):
return
client.create_collection(collection_name, **kwargs)
def __post_init__(self):
self._client = QdrantClient(
url=os.environ.get("QDRANT_URL"),
api_key=os.environ.get("QDRANT_API_KEY", None),
)
self._max_batch_size = self.global_config["embedding_batch_num"]
QdrantVectorDBStorage.create_collection_if_not_exist(
self._client,
self.namespace,
vectors_config=models.VectorParams(
size=self.embedding_func.embedding_dim, distance=models.Distance.COSINE
),
)
async def upsert(self, data: dict[str, dict]):
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
list_data = [
{
"id": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
async def wrapped_task(batch):
result = await self.embedding_func(batch)
pbar.update(1)
return result
embedding_tasks = [wrapped_task(batch) for batch in batches]
pbar = tqdm_async(
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
)
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
list_points = []
for i, d in enumerate(list_data):
list_points.append(
models.PointStruct(
id=compute_mdhash_id_for_qdrant(d["id"]),
vector=embeddings[i],
payload=d,
)
)
results = self._client.upsert(
collection_name=self.namespace, points=list_points, wait=True
)
return results
async def query(self, query, top_k=5):
embedding = await self.embedding_func([query])
results = self._client.search(
collection_name=self.namespace,
query_vector=embedding[0],
limit=top_k,
with_payload=True,
)
logger.debug(f"query result: {results}")
return [{**dp.payload, "id": dp.id, "distance": dp.score} for dp in results]

View File

@@ -1,5 +1,5 @@
import os
from typing import Any
from typing import Any, Union
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import pipmaster as pm
@@ -21,7 +21,7 @@ class RedisKVStorage(BaseKVStorage):
self._redis = Redis.from_url(redis_url, decode_responses=True)
logger.info(f"Use Redis as KV {self.namespace}")
async def get_by_id(self, id):
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
data = await self._redis.get(f"{self.namespace}:{id}")
return json.loads(data) if data else None
@@ -32,7 +32,7 @@ class RedisKVStorage(BaseKVStorage):
results = await pipe.execute()
return [json.loads(result) if result else None for result in results]
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
pipe = self._redis.pipeline()
for key in data:
pipe.exists(f"{self.namespace}:{key}")

View File

@@ -14,12 +14,12 @@ if not pm.is_installed("sqlalchemy"):
from sqlalchemy import create_engine, text
from tqdm import tqdm
from ..base import BaseVectorStorage, BaseKVStorage, BaseGraphStorage
from ..utils import logger
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
from ..namespace import NameSpace, is_namespace
from ..utils import logger
class TiDB(object):
class TiDB:
def __init__(self, config, **kwargs):
self.host = config.get("host", None)
self.port = config.get("port", None)
@@ -108,12 +108,12 @@ class TiDBKVStorage(BaseKVStorage):
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Fetch doc_full data by id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"id": id}
# print("get_by_id:"+SQL)
return await self.db.query(SQL, params)
response = await self.db.query(SQL, params)
return response if response else None
# Query by id
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
@@ -178,7 +178,7 @@ class TiDBKVStorage(BaseKVStorage):
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": f"{item['__vector__'].tolist()}",
"content_vector": f'{item["__vector__"].tolist()}',
"workspace": self.db.workspace,
}
)
@@ -222,8 +222,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
)
async def query(self, query: str, top_k: int) -> list[dict]:
"""search from tidb vector"""
"""Search from tidb vector"""
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
@@ -286,7 +285,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
"id": item["id"],
"name": item["entity_name"],
"content": item["content"],
"content_vector": f"{item['content_vector'].tolist()}",
"content_vector": f'{item["content_vector"].tolist()}',
"workspace": self.db.workspace,
}
# update entity_id if node inserted by graph_storage_instance before
@@ -308,7 +307,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
"source_name": item["src_id"],
"target_name": item["tgt_id"],
"content": item["content"],
"content_vector": f"{item['content_vector'].tolist()}",
"content_vector": f'{item["content_vector"].tolist()}',
"workspace": self.db.workspace,
}
# update relation_id if node inserted by graph_storage_instance before