@@ -498,6 +498,10 @@ pip install fastapi uvicorn pydantic
|
||||
2. Set up your environment variables:
|
||||
```bash
|
||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||
```
|
||||
|
||||
3. Run the API server:
|
||||
@@ -522,7 +526,8 @@ The API server provides the following endpoints:
|
||||
```json
|
||||
{
|
||||
"query": "Your question here",
|
||||
"mode": "hybrid" // Can be "naive", "local", "global", or "hybrid"
|
||||
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
||||
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
||||
}
|
||||
```
|
||||
- **Example:**
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -18,9 +18,17 @@ app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
@@ -28,12 +36,10 @@ async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
LLM_MODEL,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -44,37 +50,41 @@ async def llm_model_func(
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"{embedding_dim=}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func),
|
||||
)
|
||||
|
||||
|
||||
# Data models
|
||||
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: str = "hybrid"
|
||||
only_need_context: bool = False
|
||||
|
||||
|
||||
class InsertRequest(BaseModel):
|
||||
text: str
|
||||
|
||||
|
||||
class InsertFileRequest(BaseModel):
|
||||
file_path: str
|
||||
|
||||
|
||||
class Response(BaseModel):
|
||||
status: str
|
||||
data: Optional[str] = None
|
||||
@@ -89,7 +99,8 @@ async def query_endpoint(request: QueryRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
result = await loop.run_in_executor(
|
||||
None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
|
||||
None, lambda: rag.query(request.query,
|
||||
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
except Exception as e:
|
||||
@@ -107,30 +118,22 @@ async def insert_endpoint(request: InsertRequest):
|
||||
|
||||
|
||||
@app.post("/insert_file", response_model=Response)
|
||||
async def insert_file(request: InsertFileRequest):
|
||||
async def insert_file(file: UploadFile = File(...)):
|
||||
try:
|
||||
# Check if file exists
|
||||
if not os.path.exists(request.file_path):
|
||||
raise HTTPException(
|
||||
status_code=404, detail=f"File not found: {request.file_path}"
|
||||
)
|
||||
|
||||
file_content = await file.read()
|
||||
# Read file content
|
||||
try:
|
||||
with open(request.file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
content = file_content.decode("utf-8")
|
||||
except UnicodeDecodeError:
|
||||
# If UTF-8 decoding fails, try other encodings
|
||||
with open(request.file_path, "r", encoding="gbk") as f:
|
||||
content = f.read()
|
||||
|
||||
content = file_content.decode("gbk")
|
||||
# Insert file content
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||
|
||||
return Response(
|
||||
status="success",
|
||||
message=f"File content from {request.file_path} inserted successfully",
|
||||
message=f"File content from {file.filename} inserted successfully",
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
Reference in New Issue
Block a user