Merge pull request #423 from davidleon/feature/jina_embedding
add jina embedding
This commit is contained in:
@@ -583,6 +583,40 @@ async def openai_embedding(
|
|||||||
return np.array([dp.embedding for dp in response.data])
|
return np.array([dp.embedding for dp in response.data])
|
||||||
|
|
||||||
|
|
||||||
|
async def fetch_data(url, headers, data):
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
async with session.post(url, headers=headers, json=data) as response:
|
||||||
|
response_json = await response.json()
|
||||||
|
data_list = response_json.get("data", [])
|
||||||
|
return data_list
|
||||||
|
|
||||||
|
|
||||||
|
async def jina_embedding(
|
||||||
|
texts: list[str],
|
||||||
|
dimensions: int = 1024,
|
||||||
|
late_chunking: bool = False,
|
||||||
|
base_url: str = None,
|
||||||
|
api_key: str = None,
|
||||||
|
) -> np.ndarray:
|
||||||
|
if api_key:
|
||||||
|
os.environ["JINA_API_KEY"] = api_key
|
||||||
|
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {os.environ["JINA_API_KEY"]}",
|
||||||
|
}
|
||||||
|
data = {
|
||||||
|
"model": "jina-embeddings-v3",
|
||||||
|
"normalized": True,
|
||||||
|
"embedding_type": "float",
|
||||||
|
"dimensions": f"{dimensions}",
|
||||||
|
"late_chunking": late_chunking,
|
||||||
|
"input": texts,
|
||||||
|
}
|
||||||
|
data_list = await fetch_data(url, headers, data)
|
||||||
|
return np.array([dp["embedding"] for dp in data_list])
|
||||||
|
|
||||||
|
|
||||||
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
|
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
|
||||||
@retry(
|
@retry(
|
||||||
stop=stop_after_attempt(3),
|
stop=stop_after_attempt(3),
|
||||||
|
114
lightrag_jinaai_demo.py
Normal file
114
lightrag_jinaai_demo.py
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
import numpy as np
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
from lightrag.llm import jina_embedding, openai_complete_if_cache
|
||||||
|
import os
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
|
||||||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
|
return await jina_embedding(texts, api_key="YourJinaAPIKey")
|
||||||
|
|
||||||
|
|
||||||
|
WORKING_DIR = "./dickens"
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
|
||||||
|
async def llm_model_func(
|
||||||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
|
) -> str:
|
||||||
|
return await openai_complete_if_cache(
|
||||||
|
"solar-mini",
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||||
|
base_url="https://api.upstage.ai/v1/solar",
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=1024, max_token_size=8192, func=embedding_func
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def lightraginsert(file_path, semaphore):
|
||||||
|
async with semaphore:
|
||||||
|
try:
|
||||||
|
with open(file_path, "r", encoding="utf-8") as f:
|
||||||
|
content = f.read()
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
# If UTF-8 decoding fails, try other encodings
|
||||||
|
with open(file_path, "r", encoding="gbk") as f:
|
||||||
|
content = f.read()
|
||||||
|
await rag.ainsert(content)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_files(directory, concurrency_limit):
|
||||||
|
semaphore = asyncio.Semaphore(concurrency_limit)
|
||||||
|
tasks = []
|
||||||
|
for root, dirs, files in os.walk(directory):
|
||||||
|
for f in files:
|
||||||
|
file_path = os.path.join(root, f)
|
||||||
|
if f.startswith("."):
|
||||||
|
continue
|
||||||
|
tasks.append(lightraginsert(file_path, semaphore))
|
||||||
|
await asyncio.gather(*tasks)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
try:
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=1024,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=embedding_func,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
asyncio.run(process_files(WORKING_DIR, concurrency_limit=4))
|
||||||
|
|
||||||
|
# Perform naive search
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform local search
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform global search
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?",
|
||||||
|
param=QueryParam(mode="global"),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform hybrid search
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?",
|
||||||
|
param=QueryParam(mode="hybrid"),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
Reference in New Issue
Block a user