This commit is contained in:
jin
2024-11-11 15:21:37 +08:00
10 changed files with 49 additions and 37 deletions

View File

@@ -1,7 +1,7 @@
<center><h2>🚀 LightRAG: Simple and Fast Retrieval-Augmented Generation</h2></center>
![请添加图片描述](https://i-blog.csdnimg.cn/direct/567139f1a36e4564abc63ce5c12b6271.jpeg)
![LightRAG Image](https://i-blog.csdnimg.cn/direct/567139f1a36e4564abc63ce5c12b6271.jpeg)
<div align='center'>
<p>
@@ -18,11 +18,12 @@
</p>
This repository hosts the code of LightRAG. The structure of this code is based on [nano-graphrag](https://github.com/gusye1234/nano-graphrag).
![请添加图片描述](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)
![LightRAG Diagram](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)
</div>
## 🎉 News
- [x] [2024.11.08]🎯📢You can [use Oracle Database 23ai for all storage types (kv/vector/graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py) now.
- [x] [2024.11.11]🎯📢You can [use Oracle Database 23ai for all storage types (kv/vector/graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py) now.
- [x] [2024.11.09]🎯📢Now comes [LightRAG Gui](https://lightrag-gui.streamlit.app) that lets you insert, query, visualize, and download LightRAG knowledge.
- [x] [2024.11.04]🎯📢You can [use Neo4J for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-neo4j-for-storage) now.
- [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
- [x] [2024.10.20]🎯📢Weve added a new feature to LightRAG: Graph Visualization.
@@ -143,6 +144,7 @@ rag = LightRAG(
```python
from lightrag.llm import hf_model_complete, hf_embedding
from transformers import AutoModel, AutoTokenizer
from lightrag.utils import EmbeddingFunc
# Initialize LightRAG with Hugging Face model
rag = LightRAG(
@@ -173,6 +175,7 @@ Then you only need to set LightRAG as follows:
```python
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc
# Initialize LightRAG with Ollama model
rag = LightRAG(
@@ -867,6 +870,9 @@ def extract_queries(file_path):
├── lightrag_siliconcloud_demo.py
└── vram_management_demo.py
├── lightrag
├── kg
├── __init__.py
└── neo4j_impl.py
├── __init__.py
├── base.py
├── lightrag.py
@@ -884,10 +890,14 @@ def extract_queries(file_path):
└── Step_3.py
├── .gitignore
├── .pre-commit-config.yaml
├── Dockerfile
├── get_all_edges_nx.py
├── LICENSE
├── README.md
├── requirements.txt
── setup.py
── setup.py
├── test_neo4j.py
└── test.py
```
## Star History
@@ -921,4 +931,3 @@ primaryClass={cs.IR}
}
```
**Thank you for your interest in our work!**

View File

@@ -66,9 +66,11 @@ async def get_embedding_dim():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
embedding_func=EmbeddingFunc(
embedding_dim=asyncio.run(get_embedding_dim()),
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func),
func=embedding_func,
),
)
@@ -99,8 +101,13 @@ async def query_endpoint(request: QueryRequest):
try:
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(
None, lambda: rag.query(request.query,
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
None,
lambda: rag.query(
request.query,
param=QueryParam(
mode=request.mode, only_need_context=request.only_need_context
),
),
)
return Response(status="success", data=result)
except Exception as e:

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "0.0.8"
__version__ = "0.0.9"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -1,3 +1 @@
# print ("init package vars here. ......")

View File

@@ -66,7 +66,6 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
return loop
@dataclass
class LightRAG:
working_dir: str = field(

View File

@@ -609,8 +609,7 @@ async def _find_most_related_text_unit_from_entities(
return []
all_text_units = sorted(
all_text_units,
key=lambda x: (x["order"], -x["relation_counts"])
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
)
all_text_units = truncate_list_by_token_size(

View File

@@ -1,6 +1,6 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
from lightrag.llm import gpt_4o_mini_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio

View File

@@ -1,6 +1,6 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
from lightrag.llm import gpt_4o_mini_complete
#########