added nvidia text-embedding API and example of using nvidia API llm and text-embedding

This commit is contained in:
MRX760
2024-12-03 17:15:10 +07:00
parent b00f2d6027
commit 0b87e4649f
2 changed files with 199 additions and 0 deletions

View File

@@ -502,6 +502,20 @@ async def gpt_4o_mini_complete(
**kwargs,
)
async def nvidia_openai_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
result = await openai_complete_if_cache(
"nvidia/llama-3.1-nemotron-70b-instruct", #context length 128k
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url="https://integrate.api.nvidia.com/v1",
**kwargs,
)
if keyword_extraction: # TODO: use JSON API
return locate_json_string_body_from_string(result)
return result
async def azure_openai_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
@@ -588,6 +602,32 @@ async def openai_embedding(
return np.array([dp.embedding for dp in response.data])
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def nvidia_openai_embedding(
texts: list[str],
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1", #refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
base_url: str = "https://integrate.api.nvidia.com/v1",
api_key: str = None,
input_type: str = "passage", #query for retrieval, passage for embedding
trunc: str = "NONE", #NONE or START or END
encode: str = "float" #float or base64
) -> np.ndarray:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format=encode, extra_body={"input_type": input_type, "truncate": trunc}
)
return np.array([dp.embedding for dp in response.data])
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
@retry(
stop=stop_after_attempt(3),