Update project dependencies and example test files
- Updated requirements.txt with latest package versions - Added support for filtering query results by IDs in base and operate modules - Modified PostgreSQL vector storage to include document and chunk ID fields
This commit is contained in:
@@ -81,6 +81,9 @@ class QueryParam:
|
||||
history_turns: int = 3
|
||||
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
||||
|
||||
ids: list[str] | None = None
|
||||
"""List of ids to filter the results."""
|
||||
|
||||
|
||||
@dataclass
|
||||
class StorageNameSpace(ABC):
|
||||
@@ -107,7 +110,7 @@ class BaseVectorStorage(StorageNameSpace, ABC):
|
||||
meta_fields: set[str] = field(default_factory=set)
|
||||
|
||||
@abstractmethod
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
async def query(self, query: str, top_k: int, ids: list[str] = None) -> list[dict[str, Any]]:
|
||||
"""Query the vector storage and retrieve top_k results."""
|
||||
|
||||
@abstractmethod
|
||||
|
@@ -492,7 +492,7 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
await self.db.execute(upsert_sql, data)
|
||||
|
||||
#################### query method ###############
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
async def query(self, query: str, top_k: int, ids: list[str] = None) -> list[dict[str, Any]]:
|
||||
embeddings = await self.embedding_func([query])
|
||||
embedding = embeddings[0]
|
||||
embedding_string = ",".join(map(str, embedding))
|
||||
@@ -1387,6 +1387,8 @@ TABLES = {
|
||||
content_vector VECTOR,
|
||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
update_time TIMESTAMP,
|
||||
document_id VARCHAR(255) NULL,
|
||||
chunk_id VARCHAR(255) NULL,
|
||||
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
||||
)"""
|
||||
},
|
||||
@@ -1400,6 +1402,8 @@ TABLES = {
|
||||
content_vector VECTOR,
|
||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
update_time TIMESTAMP,
|
||||
document_id VARCHAR(255) NULL,
|
||||
chunk_id VARCHAR(255) NULL,
|
||||
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
||||
)"""
|
||||
},
|
||||
|
@@ -1243,6 +1243,7 @@ class LightRAG:
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
system_prompt=system_prompt,
|
||||
ids = param.ids
|
||||
)
|
||||
elif param.mode == "naive":
|
||||
response = await naive_query(
|
||||
|
@@ -602,6 +602,7 @@ async def kg_query(
|
||||
global_config: dict[str, str],
|
||||
hashing_kv: BaseKVStorage | None = None,
|
||||
system_prompt: str | None = None,
|
||||
ids: list[str] | None = None,
|
||||
) -> str | AsyncIterator[str]:
|
||||
# Handle cache
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
@@ -649,6 +650,7 @@ async def kg_query(
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
ids
|
||||
)
|
||||
|
||||
if query_param.only_need_context:
|
||||
@@ -1016,6 +1018,7 @@ async def _build_query_context(
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage,
|
||||
query_param: QueryParam,
|
||||
ids: list[str] = None,
|
||||
):
|
||||
if query_param.mode == "local":
|
||||
entities_context, relations_context, text_units_context = await _get_node_data(
|
||||
@@ -1032,6 +1035,7 @@ async def _build_query_context(
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
ids = ids
|
||||
)
|
||||
else: # hybrid mode
|
||||
ll_data, hl_data = await asyncio.gather(
|
||||
@@ -1348,11 +1352,16 @@ async def _get_edge_data(
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage,
|
||||
query_param: QueryParam,
|
||||
ids: list[str] | None = None,
|
||||
):
|
||||
logger.info(
|
||||
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
|
||||
)
|
||||
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
|
||||
if ids:
|
||||
#TODO: add ids to the query
|
||||
results = await relationships_vdb.query(keywords, top_k = query_param.top_k, ids = ids)
|
||||
else:
|
||||
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
|
||||
|
||||
if not len(results):
|
||||
return "", "", ""
|
||||
|
Reference in New Issue
Block a user