Add node limit and prioritization for knowledge graph retrieval

• Add MAX_GRAPH_NODES limit from env var
• Prioritize nodes by label match & connection
This commit is contained in:
yangdx
2025-03-02 15:39:14 +08:00
parent 87d0ee0127
commit 0f1eb42c8d
2 changed files with 87 additions and 16 deletions

View File

@@ -236,7 +236,11 @@ class NetworkXStorage(BaseGraphStorage):
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Maximum number of nodes is limited to env MAX_GRAPH_NODES(default: 1000)
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
When reducing the number of nodes, the prioritization criteria are as follows:
1. Label matching nodes take precedence
2. Followed by nodes directly connected to the matching nodes
3. Finally, the degree of the nodes
Args:
node_label: Label of the starting node
@@ -268,14 +272,49 @@ class NetworkXStorage(BaseGraphStorage):
logger.warning(f"No nodes found with label {node_label}")
return result
# Get subgraph using ego_graph
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
# Get subgraph using ego_graph from all matching nodes
combined_subgraph = nx.Graph()
for start_node in nodes_to_explore:
node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth)
combined_subgraph = nx.compose(combined_subgraph, node_subgraph)
subgraph = combined_subgraph
# Check if number of nodes exceeds max_graph_nodes
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
origin_nodes = len(subgraph.nodes())
# 获取节点度数
node_degrees = dict(subgraph.degree())
top_nodes = sorted(node_degrees.items(), key=lambda x: x[1], reverse=True)[
# 标记起点节点和直接连接的节点
start_nodes = set()
direct_connected_nodes = set()
if node_label != "*" and nodes_to_explore:
# 所有在 nodes_to_explore 中的节点都是起点节点
start_nodes = set(nodes_to_explore)
# 获取与所有起点直接连接的节点
for start_node in start_nodes:
direct_connected_nodes.update(subgraph.neighbors(start_node))
# 从直接连接节点中移除起点节点(避免重复)
direct_connected_nodes -= start_nodes
# 按优先级和度数排序
def priority_key(node_item):
node, degree = node_item
# 优先级排序:起点(2) > 直接连接(1) > 其他节点(0)
if node in start_nodes:
priority = 2
elif node in direct_connected_nodes:
priority = 1
else:
priority = 0
return (priority, degree) # 先按优先级,再按度数
# 排序并选择前MAX_GRAPH_NODES个节点
top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[
:MAX_GRAPH_NODES
]
top_node_ids = [node[0] for node in top_nodes]