Add node limit and prioritization for knowledge graph retrieval
• Add MAX_GRAPH_NODES limit from env var • Prioritize nodes by label match & connection
This commit is contained in:
@@ -23,7 +23,7 @@ import pipmaster as pm
|
|||||||
if not pm.is_installed("neo4j"):
|
if not pm.is_installed("neo4j"):
|
||||||
pm.install("neo4j")
|
pm.install("neo4j")
|
||||||
|
|
||||||
from neo4j import (
|
from neo4j import ( # type: ignore
|
||||||
AsyncGraphDatabase,
|
AsyncGraphDatabase,
|
||||||
exceptions as neo4jExceptions,
|
exceptions as neo4jExceptions,
|
||||||
AsyncDriver,
|
AsyncDriver,
|
||||||
@@ -34,6 +34,9 @@ from neo4j import (
|
|||||||
config = configparser.ConfigParser()
|
config = configparser.ConfigParser()
|
||||||
config.read("config.ini", "utf-8")
|
config.read("config.ini", "utf-8")
|
||||||
|
|
||||||
|
# 从环境变量获取最大图节点数,默认为1000
|
||||||
|
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||||
|
|
||||||
|
|
||||||
@final
|
@final
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -471,12 +474,17 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
) -> KnowledgeGraph:
|
) -> KnowledgeGraph:
|
||||||
"""
|
"""
|
||||||
Get complete connected subgraph for specified node (including the starting node itself)
|
Get complete connected subgraph for specified node (including the starting node itself)
|
||||||
|
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||||
|
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||||
|
1. Label matching nodes take precedence
|
||||||
|
2. Followed by nodes directly connected to the matching nodes
|
||||||
|
3. Finally, the degree of the nodes
|
||||||
|
|
||||||
Key fixes:
|
Args:
|
||||||
1. Include the starting node itself
|
node_label (str): Label of the starting node
|
||||||
2. Handle multi-label nodes
|
max_depth (int, optional): Maximum depth of the graph. Defaults to 5.
|
||||||
3. Clarify relationship directions
|
Returns:
|
||||||
4. Add depth control
|
KnowledgeGraph: Complete connected subgraph for specified node
|
||||||
"""
|
"""
|
||||||
label = node_label.strip('"')
|
label = node_label.strip('"')
|
||||||
result = KnowledgeGraph()
|
result = KnowledgeGraph()
|
||||||
@@ -485,14 +493,22 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
async with self._driver.session(database=self._DATABASE) as session:
|
async with self._driver.session(database=self._DATABASE) as session:
|
||||||
try:
|
try:
|
||||||
main_query = ""
|
|
||||||
if label == "*":
|
if label == "*":
|
||||||
main_query = """
|
main_query = """
|
||||||
MATCH (n)
|
MATCH (n)
|
||||||
WITH collect(DISTINCT n) AS nodes
|
OPTIONAL MATCH (n)-[r]-()
|
||||||
MATCH ()-[r]-()
|
WITH n, count(r) AS degree
|
||||||
RETURN nodes, collect(DISTINCT r) AS relationships;
|
ORDER BY degree DESC
|
||||||
|
LIMIT $max_nodes
|
||||||
|
WITH collect(n) AS nodes
|
||||||
|
MATCH (a)-[r]->(b)
|
||||||
|
WHERE a IN nodes AND b IN nodes
|
||||||
|
RETURN nodes, collect(DISTINCT r) AS relationships
|
||||||
"""
|
"""
|
||||||
|
result_set = await session.run(
|
||||||
|
main_query, {"max_nodes": MAX_GRAPH_NODES}
|
||||||
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Critical debug step: first verify if starting node exists
|
# Critical debug step: first verify if starting node exists
|
||||||
validate_query = f"MATCH (n:`{label}`) RETURN n LIMIT 1"
|
validate_query = f"MATCH (n:`{label}`) RETURN n LIMIT 1"
|
||||||
@@ -512,9 +528,25 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
bfs: true
|
bfs: true
|
||||||
}})
|
}})
|
||||||
YIELD nodes, relationships
|
YIELD nodes, relationships
|
||||||
RETURN nodes, relationships
|
WITH start, nodes, relationships
|
||||||
|
UNWIND nodes AS node
|
||||||
|
OPTIONAL MATCH (node)-[r]-()
|
||||||
|
WITH node, count(r) AS degree, start, nodes, relationships,
|
||||||
|
CASE
|
||||||
|
WHEN id(node) = id(start) THEN 2
|
||||||
|
WHEN EXISTS((start)-->(node)) OR EXISTS((node)-->(start)) THEN 1
|
||||||
|
ELSE 0
|
||||||
|
END AS priority
|
||||||
|
ORDER BY priority DESC, degree DESC
|
||||||
|
LIMIT $max_nodes
|
||||||
|
WITH collect(node) AS filtered_nodes, nodes, relationships
|
||||||
|
RETURN filtered_nodes AS nodes,
|
||||||
|
[rel IN relationships WHERE startNode(rel) IN filtered_nodes AND endNode(rel) IN filtered_nodes] AS relationships
|
||||||
"""
|
"""
|
||||||
result_set = await session.run(main_query)
|
result_set = await session.run(
|
||||||
|
main_query, {"max_nodes": MAX_GRAPH_NODES}
|
||||||
|
)
|
||||||
|
|
||||||
record = await result_set.single()
|
record = await result_set.single()
|
||||||
|
|
||||||
if record:
|
if record:
|
||||||
|
@@ -236,7 +236,11 @@ class NetworkXStorage(BaseGraphStorage):
|
|||||||
) -> KnowledgeGraph:
|
) -> KnowledgeGraph:
|
||||||
"""
|
"""
|
||||||
Get complete connected subgraph for specified node (including the starting node itself)
|
Get complete connected subgraph for specified node (including the starting node itself)
|
||||||
Maximum number of nodes is limited to env MAX_GRAPH_NODES(default: 1000)
|
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||||
|
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||||
|
1. Label matching nodes take precedence
|
||||||
|
2. Followed by nodes directly connected to the matching nodes
|
||||||
|
3. Finally, the degree of the nodes
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_label: Label of the starting node
|
node_label: Label of the starting node
|
||||||
@@ -268,14 +272,49 @@ class NetworkXStorage(BaseGraphStorage):
|
|||||||
logger.warning(f"No nodes found with label {node_label}")
|
logger.warning(f"No nodes found with label {node_label}")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
# Get subgraph using ego_graph
|
# Get subgraph using ego_graph from all matching nodes
|
||||||
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
|
combined_subgraph = nx.Graph()
|
||||||
|
for start_node in nodes_to_explore:
|
||||||
|
node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth)
|
||||||
|
combined_subgraph = nx.compose(combined_subgraph, node_subgraph)
|
||||||
|
subgraph = combined_subgraph
|
||||||
|
|
||||||
# Check if number of nodes exceeds max_graph_nodes
|
# Check if number of nodes exceeds max_graph_nodes
|
||||||
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
|
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
|
||||||
origin_nodes = len(subgraph.nodes())
|
origin_nodes = len(subgraph.nodes())
|
||||||
|
|
||||||
|
# 获取节点度数
|
||||||
node_degrees = dict(subgraph.degree())
|
node_degrees = dict(subgraph.degree())
|
||||||
top_nodes = sorted(node_degrees.items(), key=lambda x: x[1], reverse=True)[
|
|
||||||
|
# 标记起点节点和直接连接的节点
|
||||||
|
start_nodes = set()
|
||||||
|
direct_connected_nodes = set()
|
||||||
|
|
||||||
|
if node_label != "*" and nodes_to_explore:
|
||||||
|
# 所有在 nodes_to_explore 中的节点都是起点节点
|
||||||
|
start_nodes = set(nodes_to_explore)
|
||||||
|
|
||||||
|
# 获取与所有起点直接连接的节点
|
||||||
|
for start_node in start_nodes:
|
||||||
|
direct_connected_nodes.update(subgraph.neighbors(start_node))
|
||||||
|
|
||||||
|
# 从直接连接节点中移除起点节点(避免重复)
|
||||||
|
direct_connected_nodes -= start_nodes
|
||||||
|
|
||||||
|
# 按优先级和度数排序
|
||||||
|
def priority_key(node_item):
|
||||||
|
node, degree = node_item
|
||||||
|
# 优先级排序:起点(2) > 直接连接(1) > 其他节点(0)
|
||||||
|
if node in start_nodes:
|
||||||
|
priority = 2
|
||||||
|
elif node in direct_connected_nodes:
|
||||||
|
priority = 1
|
||||||
|
else:
|
||||||
|
priority = 0
|
||||||
|
return (priority, degree) # 先按优先级,再按度数
|
||||||
|
|
||||||
|
# 排序并选择前MAX_GRAPH_NODES个节点
|
||||||
|
top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[
|
||||||
:MAX_GRAPH_NODES
|
:MAX_GRAPH_NODES
|
||||||
]
|
]
|
||||||
top_node_ids = [node[0] for node in top_nodes]
|
top_node_ids = [node[0] for node in top_nodes]
|
||||||
|
Reference in New Issue
Block a user