Add node limit and prioritization for knowledge graph retrieval
• Add MAX_GRAPH_NODES limit from env var • Prioritize nodes by label match & connection
This commit is contained in:
@@ -23,7 +23,7 @@ import pipmaster as pm
|
||||
if not pm.is_installed("neo4j"):
|
||||
pm.install("neo4j")
|
||||
|
||||
from neo4j import (
|
||||
from neo4j import ( # type: ignore
|
||||
AsyncGraphDatabase,
|
||||
exceptions as neo4jExceptions,
|
||||
AsyncDriver,
|
||||
@@ -34,6 +34,9 @@ from neo4j import (
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
# 从环境变量获取最大图节点数,默认为1000
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
@@ -471,12 +474,17 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Get complete connected subgraph for specified node (including the starting node itself)
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
|
||||
Key fixes:
|
||||
1. Include the starting node itself
|
||||
2. Handle multi-label nodes
|
||||
3. Clarify relationship directions
|
||||
4. Add depth control
|
||||
Args:
|
||||
node_label (str): Label of the starting node
|
||||
max_depth (int, optional): Maximum depth of the graph. Defaults to 5.
|
||||
Returns:
|
||||
KnowledgeGraph: Complete connected subgraph for specified node
|
||||
"""
|
||||
label = node_label.strip('"')
|
||||
result = KnowledgeGraph()
|
||||
@@ -485,14 +493,22 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
try:
|
||||
main_query = ""
|
||||
if label == "*":
|
||||
main_query = """
|
||||
MATCH (n)
|
||||
WITH collect(DISTINCT n) AS nodes
|
||||
MATCH ()-[r]-()
|
||||
RETURN nodes, collect(DISTINCT r) AS relationships;
|
||||
OPTIONAL MATCH (n)-[r]-()
|
||||
WITH n, count(r) AS degree
|
||||
ORDER BY degree DESC
|
||||
LIMIT $max_nodes
|
||||
WITH collect(n) AS nodes
|
||||
MATCH (a)-[r]->(b)
|
||||
WHERE a IN nodes AND b IN nodes
|
||||
RETURN nodes, collect(DISTINCT r) AS relationships
|
||||
"""
|
||||
result_set = await session.run(
|
||||
main_query, {"max_nodes": MAX_GRAPH_NODES}
|
||||
)
|
||||
|
||||
else:
|
||||
# Critical debug step: first verify if starting node exists
|
||||
validate_query = f"MATCH (n:`{label}`) RETURN n LIMIT 1"
|
||||
@@ -512,9 +528,25 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
bfs: true
|
||||
}})
|
||||
YIELD nodes, relationships
|
||||
RETURN nodes, relationships
|
||||
WITH start, nodes, relationships
|
||||
UNWIND nodes AS node
|
||||
OPTIONAL MATCH (node)-[r]-()
|
||||
WITH node, count(r) AS degree, start, nodes, relationships,
|
||||
CASE
|
||||
WHEN id(node) = id(start) THEN 2
|
||||
WHEN EXISTS((start)-->(node)) OR EXISTS((node)-->(start)) THEN 1
|
||||
ELSE 0
|
||||
END AS priority
|
||||
ORDER BY priority DESC, degree DESC
|
||||
LIMIT $max_nodes
|
||||
WITH collect(node) AS filtered_nodes, nodes, relationships
|
||||
RETURN filtered_nodes AS nodes,
|
||||
[rel IN relationships WHERE startNode(rel) IN filtered_nodes AND endNode(rel) IN filtered_nodes] AS relationships
|
||||
"""
|
||||
result_set = await session.run(main_query)
|
||||
result_set = await session.run(
|
||||
main_query, {"max_nodes": MAX_GRAPH_NODES}
|
||||
)
|
||||
|
||||
record = await result_set.single()
|
||||
|
||||
if record:
|
||||
|
@@ -236,7 +236,11 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Get complete connected subgraph for specified node (including the starting node itself)
|
||||
Maximum number of nodes is limited to env MAX_GRAPH_NODES(default: 1000)
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
|
||||
Args:
|
||||
node_label: Label of the starting node
|
||||
@@ -268,14 +272,49 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
logger.warning(f"No nodes found with label {node_label}")
|
||||
return result
|
||||
|
||||
# Get subgraph using ego_graph
|
||||
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
|
||||
# Get subgraph using ego_graph from all matching nodes
|
||||
combined_subgraph = nx.Graph()
|
||||
for start_node in nodes_to_explore:
|
||||
node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth)
|
||||
combined_subgraph = nx.compose(combined_subgraph, node_subgraph)
|
||||
subgraph = combined_subgraph
|
||||
|
||||
# Check if number of nodes exceeds max_graph_nodes
|
||||
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
|
||||
origin_nodes = len(subgraph.nodes())
|
||||
|
||||
# 获取节点度数
|
||||
node_degrees = dict(subgraph.degree())
|
||||
top_nodes = sorted(node_degrees.items(), key=lambda x: x[1], reverse=True)[
|
||||
|
||||
# 标记起点节点和直接连接的节点
|
||||
start_nodes = set()
|
||||
direct_connected_nodes = set()
|
||||
|
||||
if node_label != "*" and nodes_to_explore:
|
||||
# 所有在 nodes_to_explore 中的节点都是起点节点
|
||||
start_nodes = set(nodes_to_explore)
|
||||
|
||||
# 获取与所有起点直接连接的节点
|
||||
for start_node in start_nodes:
|
||||
direct_connected_nodes.update(subgraph.neighbors(start_node))
|
||||
|
||||
# 从直接连接节点中移除起点节点(避免重复)
|
||||
direct_connected_nodes -= start_nodes
|
||||
|
||||
# 按优先级和度数排序
|
||||
def priority_key(node_item):
|
||||
node, degree = node_item
|
||||
# 优先级排序:起点(2) > 直接连接(1) > 其他节点(0)
|
||||
if node in start_nodes:
|
||||
priority = 2
|
||||
elif node in direct_connected_nodes:
|
||||
priority = 1
|
||||
else:
|
||||
priority = 0
|
||||
return (priority, degree) # 先按优先级,再按度数
|
||||
|
||||
# 排序并选择前MAX_GRAPH_NODES个节点
|
||||
top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[
|
||||
:MAX_GRAPH_NODES
|
||||
]
|
||||
top_node_ids = [node[0] for node in top_nodes]
|
||||
|
Reference in New Issue
Block a user