Add node limit and prioritization for knowledge graph retrieval

• Add MAX_GRAPH_NODES limit from env var
• Prioritize nodes by label match & connection
This commit is contained in:
yangdx
2025-03-02 15:39:14 +08:00
parent 87d0ee0127
commit 0f1eb42c8d
2 changed files with 87 additions and 16 deletions

View File

@@ -23,7 +23,7 @@ import pipmaster as pm
if not pm.is_installed("neo4j"):
pm.install("neo4j")
from neo4j import (
from neo4j import ( # type: ignore
AsyncGraphDatabase,
exceptions as neo4jExceptions,
AsyncDriver,
@@ -34,6 +34,9 @@ from neo4j import (
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
# 从环境变量获取最大图节点数默认为1000
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
@final
@dataclass
@@ -471,12 +474,17 @@ class Neo4JStorage(BaseGraphStorage):
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
When reducing the number of nodes, the prioritization criteria are as follows:
1. Label matching nodes take precedence
2. Followed by nodes directly connected to the matching nodes
3. Finally, the degree of the nodes
Key fixes:
1. Include the starting node itself
2. Handle multi-label nodes
3. Clarify relationship directions
4. Add depth control
Args:
node_label (str): Label of the starting node
max_depth (int, optional): Maximum depth of the graph. Defaults to 5.
Returns:
KnowledgeGraph: Complete connected subgraph for specified node
"""
label = node_label.strip('"')
result = KnowledgeGraph()
@@ -485,14 +493,22 @@ class Neo4JStorage(BaseGraphStorage):
async with self._driver.session(database=self._DATABASE) as session:
try:
main_query = ""
if label == "*":
main_query = """
MATCH (n)
WITH collect(DISTINCT n) AS nodes
MATCH ()-[r]-()
RETURN nodes, collect(DISTINCT r) AS relationships;
OPTIONAL MATCH (n)-[r]-()
WITH n, count(r) AS degree
ORDER BY degree DESC
LIMIT $max_nodes
WITH collect(n) AS nodes
MATCH (a)-[r]->(b)
WHERE a IN nodes AND b IN nodes
RETURN nodes, collect(DISTINCT r) AS relationships
"""
result_set = await session.run(
main_query, {"max_nodes": MAX_GRAPH_NODES}
)
else:
# Critical debug step: first verify if starting node exists
validate_query = f"MATCH (n:`{label}`) RETURN n LIMIT 1"
@@ -512,9 +528,25 @@ class Neo4JStorage(BaseGraphStorage):
bfs: true
}})
YIELD nodes, relationships
RETURN nodes, relationships
WITH start, nodes, relationships
UNWIND nodes AS node
OPTIONAL MATCH (node)-[r]-()
WITH node, count(r) AS degree, start, nodes, relationships,
CASE
WHEN id(node) = id(start) THEN 2
WHEN EXISTS((start)-->(node)) OR EXISTS((node)-->(start)) THEN 1
ELSE 0
END AS priority
ORDER BY priority DESC, degree DESC
LIMIT $max_nodes
WITH collect(node) AS filtered_nodes, nodes, relationships
RETURN filtered_nodes AS nodes,
[rel IN relationships WHERE startNode(rel) IN filtered_nodes AND endNode(rel) IN filtered_nodes] AS relationships
"""
result_set = await session.run(main_query)
result_set = await session.run(
main_query, {"max_nodes": MAX_GRAPH_NODES}
)
record = await result_set.single()
if record:

View File

@@ -236,7 +236,11 @@ class NetworkXStorage(BaseGraphStorage):
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Maximum number of nodes is limited to env MAX_GRAPH_NODES(default: 1000)
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
When reducing the number of nodes, the prioritization criteria are as follows:
1. Label matching nodes take precedence
2. Followed by nodes directly connected to the matching nodes
3. Finally, the degree of the nodes
Args:
node_label: Label of the starting node
@@ -268,14 +272,49 @@ class NetworkXStorage(BaseGraphStorage):
logger.warning(f"No nodes found with label {node_label}")
return result
# Get subgraph using ego_graph
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
# Get subgraph using ego_graph from all matching nodes
combined_subgraph = nx.Graph()
for start_node in nodes_to_explore:
node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth)
combined_subgraph = nx.compose(combined_subgraph, node_subgraph)
subgraph = combined_subgraph
# Check if number of nodes exceeds max_graph_nodes
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
origin_nodes = len(subgraph.nodes())
# 获取节点度数
node_degrees = dict(subgraph.degree())
top_nodes = sorted(node_degrees.items(), key=lambda x: x[1], reverse=True)[
# 标记起点节点和直接连接的节点
start_nodes = set()
direct_connected_nodes = set()
if node_label != "*" and nodes_to_explore:
# 所有在 nodes_to_explore 中的节点都是起点节点
start_nodes = set(nodes_to_explore)
# 获取与所有起点直接连接的节点
for start_node in start_nodes:
direct_connected_nodes.update(subgraph.neighbors(start_node))
# 从直接连接节点中移除起点节点(避免重复)
direct_connected_nodes -= start_nodes
# 按优先级和度数排序
def priority_key(node_item):
node, degree = node_item
# 优先级排序:起点(2) > 直接连接(1) > 其他节点(0)
if node in start_nodes:
priority = 2
elif node in direct_connected_nodes:
priority = 1
else:
priority = 0
return (priority, degree) # 先按优先级,再按度数
# 排序并选择前MAX_GRAPH_NODES个节点
top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[
:MAX_GRAPH_NODES
]
top_node_ids = [node[0] for node in top_nodes]