Add ability to passadditional parameters to ollama library like host and timeout
This commit is contained in:
121
.gitignore
vendored
Normal file
121
.gitignore
vendored
Normal file
@@ -0,0 +1,121 @@
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
*.egg
|
||||
*.egg-info/
|
||||
dist/
|
||||
build/
|
||||
*.whl
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.env.*
|
||||
.venv
|
||||
.venv.*
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyderworkspace
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# Example files
|
||||
book.txt
|
||||
dickens/
|
@@ -1,4 +1,7 @@
|
||||
import os
|
||||
import logging
|
||||
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.DEBUG)
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
@@ -11,15 +14,17 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name='your_model_name',
|
||||
tiktoken_model_name="mistral:7b",
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="mistral:7b",
|
||||
llm_model_max_async=2,
|
||||
llm_model_kwargs={"host": "http://localhost:11434"},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
@@ -28,13 +33,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -86,6 +86,7 @@ class LightRAG:
|
||||
llm_model_name: str = 'meta-llama/Llama-3.2-1B-Instruct'#'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
||||
llm_model_max_token_size: int = 32768
|
||||
llm_model_max_async: int = 16
|
||||
llm_model_kwargs: dict = field(default_factory=dict)
|
||||
|
||||
# storage
|
||||
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
|
||||
@@ -158,7 +159,7 @@ class LightRAG:
|
||||
)
|
||||
|
||||
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
||||
partial(self.llm_model_func, hashing_kv=self.llm_response_cache)
|
||||
partial(self.llm_model_func, hashing_kv=self.llm_response_cache, **self.llm_model_kwargs)
|
||||
)
|
||||
|
||||
def insert(self, string_or_strings):
|
||||
|
@@ -98,8 +98,10 @@ async def ollama_model_if_cache(
|
||||
) -> str:
|
||||
kwargs.pop("max_tokens", None)
|
||||
kwargs.pop("response_format", None)
|
||||
host = kwargs.pop("host", None)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
ollama_client = ollama.AsyncClient()
|
||||
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
@@ -193,10 +195,11 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||
return embeddings.detach().numpy()
|
||||
|
||||
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||||
embed_text = []
|
||||
ollama_client = ollama.Client(**kwargs)
|
||||
for text in texts:
|
||||
data = ollama.embeddings(model=embed_model, prompt=text)
|
||||
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
||||
embed_text.append(data["embedding"])
|
||||
|
||||
return embed_text
|
||||
|
Reference in New Issue
Block a user