Merge pull request #325 from jin38324/main
Enhance Query Logic and Add Configurable Features
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -12,3 +12,5 @@ ignore_this.txt
|
||||
.venv/
|
||||
*.ignore.*
|
||||
.ruff_cache/
|
||||
gui/
|
||||
*.log
|
||||
|
29
README.md
29
README.md
@@ -555,6 +555,35 @@ if __name__ == "__main__":
|
||||
|
||||
</details>
|
||||
|
||||
### LightRAG init parameters
|
||||
|
||||
| **Parameter** | **Type** | **Explanation** | **Default** |
|
||||
| --- | --- | --- | --- |
|
||||
| **working\_dir** | `str` | Directory where the cache will be stored | `lightrag_cache+timestamp` |
|
||||
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
|
||||
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
|
||||
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
|
||||
| **log\_level** | | Log level for application runtime | `logging.DEBUG` |
|
||||
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
||||
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
||||
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
|
||||
| **entity\_extract\_max\_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
|
||||
| **entity\_summary\_to\_max\_tokens** | `int` | Maximum token size for each entity summary | `500` |
|
||||
| **node\_embedding\_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
|
||||
| **node2vec\_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
|
||||
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embedding` |
|
||||
| **embedding\_batch\_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
|
||||
| **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
|
||||
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
||||
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
||||
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768` |
|
||||
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `16` |
|
||||
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
|
||||
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database (currently not used) | |
|
||||
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
||||
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
|
||||
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
||||
|
||||
## API Server Implementation
|
||||
|
||||
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -24,50 +24,50 @@ custom_kg = {
|
||||
"entity_name": "CompanyA",
|
||||
"entity_type": "Organization",
|
||||
"description": "A major technology company",
|
||||
"source_id": "Source1"
|
||||
"source_id": "Source1",
|
||||
},
|
||||
{
|
||||
"entity_name": "ProductX",
|
||||
"entity_type": "Product",
|
||||
"description": "A popular product developed by CompanyA",
|
||||
"source_id": "Source1"
|
||||
"source_id": "Source1",
|
||||
},
|
||||
{
|
||||
"entity_name": "PersonA",
|
||||
"entity_type": "Person",
|
||||
"description": "A renowned researcher in AI",
|
||||
"source_id": "Source2"
|
||||
"source_id": "Source2",
|
||||
},
|
||||
{
|
||||
"entity_name": "UniversityB",
|
||||
"entity_type": "Organization",
|
||||
"description": "A leading university specializing in technology and sciences",
|
||||
"source_id": "Source2"
|
||||
"source_id": "Source2",
|
||||
},
|
||||
{
|
||||
"entity_name": "CityC",
|
||||
"entity_type": "Location",
|
||||
"description": "A large metropolitan city known for its culture and economy",
|
||||
"source_id": "Source3"
|
||||
"source_id": "Source3",
|
||||
},
|
||||
{
|
||||
"entity_name": "EventY",
|
||||
"entity_type": "Event",
|
||||
"description": "An annual technology conference held in CityC",
|
||||
"source_id": "Source3"
|
||||
"source_id": "Source3",
|
||||
},
|
||||
{
|
||||
"entity_name": "CompanyD",
|
||||
"entity_type": "Organization",
|
||||
"description": "A financial services company specializing in insurance",
|
||||
"source_id": "Source4"
|
||||
"source_id": "Source4",
|
||||
},
|
||||
{
|
||||
"entity_name": "ServiceZ",
|
||||
"entity_type": "Service",
|
||||
"description": "An insurance product offered by CompanyD",
|
||||
"source_id": "Source4"
|
||||
}
|
||||
"source_id": "Source4",
|
||||
},
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
@@ -76,7 +76,7 @@ custom_kg = {
|
||||
"description": "CompanyA develops ProductX",
|
||||
"keywords": "develop, produce",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source1"
|
||||
"source_id": "Source1",
|
||||
},
|
||||
{
|
||||
"src_id": "PersonA",
|
||||
@@ -84,7 +84,7 @@ custom_kg = {
|
||||
"description": "PersonA works at UniversityB",
|
||||
"keywords": "employment, affiliation",
|
||||
"weight": 0.9,
|
||||
"source_id": "Source2"
|
||||
"source_id": "Source2",
|
||||
},
|
||||
{
|
||||
"src_id": "CityC",
|
||||
@@ -92,7 +92,7 @@ custom_kg = {
|
||||
"description": "EventY is hosted in CityC",
|
||||
"keywords": "host, location",
|
||||
"weight": 0.8,
|
||||
"source_id": "Source3"
|
||||
"source_id": "Source3",
|
||||
},
|
||||
{
|
||||
"src_id": "CompanyD",
|
||||
@@ -100,9 +100,9 @@ custom_kg = {
|
||||
"description": "CompanyD provides ServiceZ",
|
||||
"keywords": "provide, offer",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source4"
|
||||
}
|
||||
]
|
||||
"source_id": "Source4",
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
||||
|
@@ -1,10 +1,13 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from fastapi import Query
|
||||
from contextlib import asynccontextmanager
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional
|
||||
from typing import Optional, Any
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import asyncio
|
||||
@@ -16,9 +19,7 @@ import numpy as np
|
||||
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
|
||||
|
||||
print(os.getcwd())
|
||||
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
sys.path.append(os.path.abspath(script_directory))
|
||||
|
||||
@@ -37,14 +38,13 @@ APIKEY = "ocigenerativeai"
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus-08-2024")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
@@ -94,10 +94,10 @@ async def init():
|
||||
"user": "",
|
||||
"password": "",
|
||||
"dsn": "",
|
||||
"config_dir": "",
|
||||
"wallet_location": "",
|
||||
"wallet_password": "",
|
||||
"workspace": "",
|
||||
"config_dir": "path_to_config_dir",
|
||||
"wallet_location": "path_to_wallet_location",
|
||||
"wallet_password": "wallet_password",
|
||||
"workspace": "company",
|
||||
} # specify which docs you want to store and query
|
||||
)
|
||||
|
||||
@@ -105,6 +105,7 @@ async def init():
|
||||
await oracle_db.check_tables()
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
@@ -128,6 +129,17 @@ async def init():
|
||||
return rag
|
||||
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# await rag.ainsert(f.read())
|
||||
|
||||
# # Perform search in different modes
|
||||
# modes = ["naive", "local", "global", "hybrid"]
|
||||
# for mode in modes:
|
||||
# print("="*20, mode, "="*20)
|
||||
# print(await rag.aquery("这篇文档是关于什么内容的?", param=QueryParam(mode=mode)))
|
||||
# print("-"*100, "\n")
|
||||
|
||||
# Data models
|
||||
|
||||
|
||||
@@ -135,6 +147,11 @@ class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: str = "hybrid"
|
||||
only_need_context: bool = False
|
||||
only_need_prompt: bool = False
|
||||
|
||||
|
||||
class DataRequest(BaseModel):
|
||||
limit: int = 100
|
||||
|
||||
|
||||
class InsertRequest(BaseModel):
|
||||
@@ -143,7 +160,7 @@ class InsertRequest(BaseModel):
|
||||
|
||||
class Response(BaseModel):
|
||||
status: str
|
||||
data: Optional[str] = None
|
||||
data: Optional[Any] = None
|
||||
message: Optional[str] = None
|
||||
|
||||
|
||||
@@ -167,17 +184,35 @@ app = FastAPI(
|
||||
|
||||
@app.post("/query", response_model=Response)
|
||||
async def query_endpoint(request: QueryRequest):
|
||||
try:
|
||||
# loop = asyncio.get_event_loop()
|
||||
result = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode, only_need_context=request.only_need_context
|
||||
),
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
# try:
|
||||
# loop = asyncio.get_event_loop()
|
||||
if request.mode == "naive":
|
||||
top_k = 3
|
||||
else:
|
||||
top_k = 60
|
||||
result = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode,
|
||||
only_need_context=request.only_need_context,
|
||||
only_need_prompt=request.only_need_prompt,
|
||||
top_k=top_k,
|
||||
),
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
# except Exception as e:
|
||||
# raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@app.get("/data", response_model=Response)
|
||||
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
|
||||
if type == "nodes":
|
||||
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit=limit)
|
||||
elif type == "edges":
|
||||
result = await rag.chunk_entity_relation_graph.get_all_edges(limit=limit)
|
||||
elif type == "statistics":
|
||||
result = await rag.chunk_entity_relation_graph.get_statistics()
|
||||
return Response(status="success", data=result)
|
||||
|
||||
|
||||
@app.post("/insert", response_model=Response)
|
||||
@@ -220,7 +255,7 @@ async def health_check():
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=8020)
|
||||
uvicorn.run(app, host="127.0.0.1", port=8020)
|
||||
|
||||
# Usage example
|
||||
# To run the server, use the following command in your terminal:
|
||||
|
@@ -84,6 +84,7 @@ async def main():
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
|
@@ -17,9 +17,12 @@ T = TypeVar("T")
|
||||
class QueryParam:
|
||||
mode: Literal["local", "global", "hybrid", "naive"] = "global"
|
||||
only_need_context: bool = False
|
||||
only_need_prompt: bool = False
|
||||
response_type: str = "Multiple Paragraphs"
|
||||
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
|
||||
top_k: int = 60
|
||||
# Number of document chunks to retrieve.
|
||||
# top_n: int = 10
|
||||
# Number of tokens for the original chunks.
|
||||
max_token_for_text_unit: int = 4000
|
||||
# Number of tokens for the relationship descriptions
|
||||
|
@@ -545,6 +545,13 @@ class OracleGraphStorage(BaseGraphStorage):
|
||||
if res:
|
||||
return res
|
||||
|
||||
async def get_statistics(self):
|
||||
SQL = SQL_TEMPLATES["get_statistics"]
|
||||
params = {"workspace": self.db.workspace}
|
||||
res = await self.db.query(sql=SQL, params=params, multirows=True)
|
||||
if res:
|
||||
return res
|
||||
|
||||
|
||||
N_T = {
|
||||
"full_docs": "LIGHTRAG_DOC_FULL",
|
||||
@@ -717,13 +724,22 @@ SQL_TEMPLATES = {
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
||||
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
|
||||
"get_all_nodes": """SELECT t1.name as id,t1.entity_type as label,t1.DESCRIPTION,t2.content
|
||||
FROM LIGHTRAG_GRAPH_NODES t1
|
||||
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
|
||||
WHERE t1.workspace=:workspace
|
||||
order by t1.CREATETIME DESC
|
||||
fetch first :limit rows only
|
||||
""",
|
||||
"get_all_nodes": """WITH t0 AS (
|
||||
SELECT name AS id, entity_type AS label, entity_type, description,
|
||||
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
|
||||
FROM lightrag_graph_nodes
|
||||
WHERE workspace = :workspace
|
||||
ORDER BY createtime DESC fetch first :limit rows only
|
||||
), t1 AS (
|
||||
SELECT t0.id, source_chunk_id
|
||||
FROM t0, JSON_TABLE ( source_chunk_ids, '$[*]' COLUMNS ( source_chunk_id PATH '$' ) )
|
||||
), t2 AS (
|
||||
SELECT t1.id, LISTAGG(t2.content, '\n') content
|
||||
FROM t1 LEFT JOIN lightrag_doc_chunks t2 ON t1.source_chunk_id = t2.id
|
||||
GROUP BY t1.id
|
||||
)
|
||||
SELECT t0.id, label, entity_type, description, t2.content
|
||||
FROM t0 LEFT JOIN t2 ON t0.id = t2.id""",
|
||||
"get_all_edges": """SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
|
||||
t1.weight,t1.DESCRIPTION,t2.content
|
||||
FROM LIGHTRAG_GRAPH_EDGES t1
|
||||
@@ -731,4 +747,13 @@ SQL_TEMPLATES = {
|
||||
WHERE t1.workspace=:workspace
|
||||
order by t1.CREATETIME DESC
|
||||
fetch first :limit rows only""",
|
||||
"get_statistics": """select count(distinct CASE WHEN type='node' THEN id END) as nodes_count,
|
||||
count(distinct CASE WHEN type='edge' THEN id END) as edges_count
|
||||
FROM (
|
||||
select 'node' as type, id FROM GRAPH_TABLE (lightrag_graph
|
||||
MATCH (a) WHERE a.workspace=:workspace columns(a.name as id))
|
||||
UNION
|
||||
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
|
||||
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
|
||||
)""",
|
||||
}
|
||||
|
@@ -13,9 +13,8 @@ from .llm import (
|
||||
from .operate import (
|
||||
chunking_by_token_size,
|
||||
extract_entities,
|
||||
local_query,
|
||||
global_query,
|
||||
hybrid_query,
|
||||
# local_query,global_query,hybrid_query,
|
||||
kg_query,
|
||||
naive_query,
|
||||
)
|
||||
|
||||
@@ -415,28 +414,8 @@ class LightRAG:
|
||||
return loop.run_until_complete(self.aquery(query, param))
|
||||
|
||||
async def aquery(self, query: str, param: QueryParam = QueryParam()):
|
||||
if param.mode == "local":
|
||||
response = await local_query(
|
||||
query,
|
||||
self.chunk_entity_relation_graph,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
self.text_chunks,
|
||||
param,
|
||||
asdict(self),
|
||||
)
|
||||
elif param.mode == "global":
|
||||
response = await global_query(
|
||||
query,
|
||||
self.chunk_entity_relation_graph,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
self.text_chunks,
|
||||
param,
|
||||
asdict(self),
|
||||
)
|
||||
elif param.mode == "hybrid":
|
||||
response = await hybrid_query(
|
||||
if param.mode in ["local", "global", "hybrid"]:
|
||||
response = await kg_query(
|
||||
query,
|
||||
self.chunk_entity_relation_graph,
|
||||
self.entities_vdb,
|
||||
|
@@ -69,12 +69,15 @@ async def openai_complete_if_cache(
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = content.encode("utf-8").decode("unicode_escape")
|
||||
# print(content)
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert(
|
||||
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
return content
|
||||
|
||||
|
||||
@retry(
|
||||
|
@@ -249,6 +249,17 @@ async def extract_entities(
|
||||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||||
|
||||
ordered_chunks = list(chunks.items())
|
||||
# add language and example number params to prompt
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
example_number = global_config["addon_params"].get("example_number", None)
|
||||
if example_number and example_number < len(PROMPTS["entity_extraction_examples"]):
|
||||
examples = "\n".join(
|
||||
PROMPTS["entity_extraction_examples"][: int(example_number)]
|
||||
)
|
||||
else:
|
||||
examples = "\n".join(PROMPTS["entity_extraction_examples"])
|
||||
|
||||
entity_extract_prompt = PROMPTS["entity_extraction"]
|
||||
context_base = dict(
|
||||
@@ -256,7 +267,10 @@ async def extract_entities(
|
||||
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
||||
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
||||
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
|
||||
examples=examples,
|
||||
language=language,
|
||||
)
|
||||
|
||||
continue_prompt = PROMPTS["entiti_continue_extraction"]
|
||||
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
|
||||
|
||||
@@ -271,7 +285,6 @@ async def extract_entities(
|
||||
content = chunk_dp["content"]
|
||||
hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
|
||||
final_result = await use_llm_func(hint_prompt)
|
||||
|
||||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
||||
for now_glean_index in range(entity_extract_max_gleaning):
|
||||
glean_result = await use_llm_func(continue_prompt, history_messages=history)
|
||||
@@ -414,7 +427,7 @@ async def extract_entities(
|
||||
return knowledge_graph_inst
|
||||
|
||||
|
||||
async def local_query(
|
||||
async def kg_query(
|
||||
query,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
@@ -424,42 +437,63 @@ async def local_query(
|
||||
global_config: dict,
|
||||
) -> str:
|
||||
context = None
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
|
||||
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
||||
kw_prompt = kw_prompt_temp.format(query=query)
|
||||
result = await use_model_func(kw_prompt)
|
||||
json_text = locate_json_string_body_from_string(result)
|
||||
|
||||
try:
|
||||
keywords_data = json.loads(json_text)
|
||||
keywords = keywords_data.get("low_level_keywords", [])
|
||||
keywords = ", ".join(keywords)
|
||||
except json.JSONDecodeError:
|
||||
try:
|
||||
result = (
|
||||
result.replace(kw_prompt[:-1], "")
|
||||
.replace("user", "")
|
||||
.replace("model", "")
|
||||
.strip()
|
||||
)
|
||||
result = "{" + result.split("{")[-1].split("}")[0] + "}"
|
||||
|
||||
keywords_data = json.loads(result)
|
||||
keywords = keywords_data.get("low_level_keywords", [])
|
||||
keywords = ", ".join(keywords)
|
||||
# Handle parsing error
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON parsing error: {e}")
|
||||
return PROMPTS["fail_response"]
|
||||
if keywords:
|
||||
context = await _build_local_query_context(
|
||||
keywords,
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
example_number = global_config["addon_params"].get("example_number", None)
|
||||
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
||||
examples = "\n".join(
|
||||
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
||||
)
|
||||
else:
|
||||
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
|
||||
|
||||
# Set mode
|
||||
if query_param.mode not in ["local", "global", "hybrid"]:
|
||||
logger.error(f"Unknown mode {query_param.mode} in kg_query")
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
# LLM generate keywords
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
||||
kw_prompt = kw_prompt_temp.format(query=query, examples=examples)
|
||||
result = await use_model_func(kw_prompt)
|
||||
logger.info("kw_prompt result:")
|
||||
print(result)
|
||||
try:
|
||||
json_text = locate_json_string_body_from_string(result)
|
||||
keywords_data = json.loads(json_text)
|
||||
hl_keywords = keywords_data.get("high_level_keywords", [])
|
||||
ll_keywords = keywords_data.get("low_level_keywords", [])
|
||||
|
||||
# Handle parsing error
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON parsing error: {e} {result}")
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
# Handdle keywords missing
|
||||
if hl_keywords == [] and ll_keywords == []:
|
||||
logger.warning("low_level_keywords and high_level_keywords is empty")
|
||||
return PROMPTS["fail_response"]
|
||||
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
|
||||
logger.warning("low_level_keywords is empty")
|
||||
return PROMPTS["fail_response"]
|
||||
else:
|
||||
ll_keywords = ", ".join(ll_keywords)
|
||||
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
|
||||
logger.warning("high_level_keywords is empty")
|
||||
return PROMPTS["fail_response"]
|
||||
else:
|
||||
hl_keywords = ", ".join(hl_keywords)
|
||||
|
||||
# Build context
|
||||
keywords = [ll_keywords, hl_keywords]
|
||||
context = await _build_query_context(
|
||||
keywords,
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
|
||||
if query_param.only_need_context:
|
||||
return context
|
||||
if context is None:
|
||||
@@ -468,6 +502,8 @@ async def local_query(
|
||||
sys_prompt = sys_prompt_temp.format(
|
||||
context_data=context, response_type=query_param.response_type
|
||||
)
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
response = await use_model_func(
|
||||
query,
|
||||
system_prompt=sys_prompt,
|
||||
@@ -486,22 +522,114 @@ async def local_query(
|
||||
return response
|
||||
|
||||
|
||||
async def _build_local_query_context(
|
||||
async def _build_query_context(
|
||||
query: list,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
):
|
||||
ll_kewwords, hl_keywrds = query[0], query[1]
|
||||
if query_param.mode in ["local", "hybrid"]:
|
||||
if ll_kewwords == "":
|
||||
ll_entities_context, ll_relations_context, ll_text_units_context = (
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
)
|
||||
warnings.warn(
|
||||
"Low Level context is None. Return empty Low entity/relationship/source"
|
||||
)
|
||||
query_param.mode = "global"
|
||||
else:
|
||||
(
|
||||
ll_entities_context,
|
||||
ll_relations_context,
|
||||
ll_text_units_context,
|
||||
) = await _get_node_data(
|
||||
ll_kewwords,
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
if query_param.mode in ["global", "hybrid"]:
|
||||
if hl_keywrds == "":
|
||||
hl_entities_context, hl_relations_context, hl_text_units_context = (
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
)
|
||||
warnings.warn(
|
||||
"High Level context is None. Return empty High entity/relationship/source"
|
||||
)
|
||||
query_param.mode = "local"
|
||||
else:
|
||||
(
|
||||
hl_entities_context,
|
||||
hl_relations_context,
|
||||
hl_text_units_context,
|
||||
) = await _get_edge_data(
|
||||
hl_keywrds,
|
||||
knowledge_graph_inst,
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
if query_param.mode == "hybrid":
|
||||
entities_context, relations_context, text_units_context = combine_contexts(
|
||||
[hl_entities_context, ll_entities_context],
|
||||
[hl_relations_context, ll_relations_context],
|
||||
[hl_text_units_context, ll_text_units_context],
|
||||
)
|
||||
elif query_param.mode == "local":
|
||||
entities_context, relations_context, text_units_context = (
|
||||
ll_entities_context,
|
||||
ll_relations_context,
|
||||
ll_text_units_context,
|
||||
)
|
||||
elif query_param.mode == "global":
|
||||
entities_context, relations_context, text_units_context = (
|
||||
hl_entities_context,
|
||||
hl_relations_context,
|
||||
hl_text_units_context,
|
||||
)
|
||||
return f"""
|
||||
-----Entities-----
|
||||
```csv
|
||||
{entities_context}
|
||||
```
|
||||
-----Relationships-----
|
||||
```csv
|
||||
{relations_context}
|
||||
```
|
||||
-----Sources-----
|
||||
```csv
|
||||
{text_units_context}
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
async def _get_node_data(
|
||||
query,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
):
|
||||
# get similar entities
|
||||
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
||||
|
||||
if not len(results):
|
||||
return None
|
||||
# get entity information
|
||||
node_datas = await asyncio.gather(
|
||||
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
|
||||
)
|
||||
if not all([n is not None for n in node_datas]):
|
||||
logger.warning("Some nodes are missing, maybe the storage is damaged")
|
||||
|
||||
# get entity degree
|
||||
node_degrees = await asyncio.gather(
|
||||
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
|
||||
)
|
||||
@@ -510,15 +638,19 @@ async def _build_local_query_context(
|
||||
for k, n, d in zip(results, node_datas, node_degrees)
|
||||
if n is not None
|
||||
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||
# get entitytext chunk
|
||||
use_text_units = await _find_most_related_text_unit_from_entities(
|
||||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
)
|
||||
# get relate edges
|
||||
use_relations = await _find_most_related_edges_from_entities(
|
||||
node_datas, query_param, knowledge_graph_inst
|
||||
)
|
||||
logger.info(
|
||||
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
|
||||
)
|
||||
|
||||
# build prompt
|
||||
entites_section_list = [["id", "entity", "type", "description", "rank"]]
|
||||
for i, n in enumerate(node_datas):
|
||||
entites_section_list.append(
|
||||
@@ -553,20 +685,7 @@ async def _build_local_query_context(
|
||||
for i, t in enumerate(use_text_units):
|
||||
text_units_section_list.append([i, t["content"]])
|
||||
text_units_context = list_of_list_to_csv(text_units_section_list)
|
||||
return f"""
|
||||
-----Entities-----
|
||||
```csv
|
||||
{entities_context}
|
||||
```
|
||||
-----Relationships-----
|
||||
```csv
|
||||
{relations_context}
|
||||
```
|
||||
-----Sources-----
|
||||
```csv
|
||||
{text_units_context}
|
||||
```
|
||||
"""
|
||||
return entities_context, relations_context, text_units_context
|
||||
|
||||
|
||||
async def _find_most_related_text_unit_from_entities(
|
||||
@@ -683,86 +802,9 @@ async def _find_most_related_edges_from_entities(
|
||||
return all_edges_data
|
||||
|
||||
|
||||
async def global_query(
|
||||
query,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
global_config: dict,
|
||||
) -> str:
|
||||
context = None
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
|
||||
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
||||
kw_prompt = kw_prompt_temp.format(query=query)
|
||||
result = await use_model_func(kw_prompt)
|
||||
json_text = locate_json_string_body_from_string(result)
|
||||
|
||||
try:
|
||||
keywords_data = json.loads(json_text)
|
||||
keywords = keywords_data.get("high_level_keywords", [])
|
||||
keywords = ", ".join(keywords)
|
||||
except json.JSONDecodeError:
|
||||
try:
|
||||
result = (
|
||||
result.replace(kw_prompt[:-1], "")
|
||||
.replace("user", "")
|
||||
.replace("model", "")
|
||||
.strip()
|
||||
)
|
||||
result = "{" + result.split("{")[-1].split("}")[0] + "}"
|
||||
|
||||
keywords_data = json.loads(result)
|
||||
keywords = keywords_data.get("high_level_keywords", [])
|
||||
keywords = ", ".join(keywords)
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
# Handle parsing error
|
||||
print(f"JSON parsing error: {e}")
|
||||
return PROMPTS["fail_response"]
|
||||
if keywords:
|
||||
context = await _build_global_query_context(
|
||||
keywords,
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
|
||||
if query_param.only_need_context:
|
||||
return context
|
||||
if context is None:
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
sys_prompt_temp = PROMPTS["rag_response"]
|
||||
sys_prompt = sys_prompt_temp.format(
|
||||
context_data=context, response_type=query_param.response_type
|
||||
)
|
||||
response = await use_model_func(
|
||||
query,
|
||||
system_prompt=sys_prompt,
|
||||
)
|
||||
if len(response) > len(sys_prompt):
|
||||
response = (
|
||||
response.replace(sys_prompt, "")
|
||||
.replace("user", "")
|
||||
.replace("model", "")
|
||||
.replace(query, "")
|
||||
.replace("<system>", "")
|
||||
.replace("</system>", "")
|
||||
.strip()
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
async def _build_global_query_context(
|
||||
async def _get_edge_data(
|
||||
keywords,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
@@ -804,6 +846,7 @@ async def _build_global_query_context(
|
||||
logger.info(
|
||||
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units"
|
||||
)
|
||||
|
||||
relations_section_list = [
|
||||
["id", "source", "target", "description", "keywords", "weight", "rank"]
|
||||
]
|
||||
@@ -838,21 +881,7 @@ async def _build_global_query_context(
|
||||
for i, t in enumerate(use_text_units):
|
||||
text_units_section_list.append([i, t["content"]])
|
||||
text_units_context = list_of_list_to_csv(text_units_section_list)
|
||||
|
||||
return f"""
|
||||
-----Entities-----
|
||||
```csv
|
||||
{entities_context}
|
||||
```
|
||||
-----Relationships-----
|
||||
```csv
|
||||
{relations_context}
|
||||
```
|
||||
-----Sources-----
|
||||
```csv
|
||||
{text_units_context}
|
||||
```
|
||||
"""
|
||||
return entities_context, relations_context, text_units_context
|
||||
|
||||
|
||||
async def _find_most_related_entities_from_relationships(
|
||||
@@ -929,134 +958,11 @@ async def _find_related_text_unit_from_relationships(
|
||||
return all_text_units
|
||||
|
||||
|
||||
async def hybrid_query(
|
||||
query,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
global_config: dict,
|
||||
) -> str:
|
||||
low_level_context = None
|
||||
high_level_context = None
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
|
||||
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
||||
kw_prompt = kw_prompt_temp.format(query=query)
|
||||
|
||||
result = await use_model_func(kw_prompt)
|
||||
json_text = locate_json_string_body_from_string(result)
|
||||
try:
|
||||
keywords_data = json.loads(json_text)
|
||||
hl_keywords = keywords_data.get("high_level_keywords", [])
|
||||
ll_keywords = keywords_data.get("low_level_keywords", [])
|
||||
hl_keywords = ", ".join(hl_keywords)
|
||||
ll_keywords = ", ".join(ll_keywords)
|
||||
except json.JSONDecodeError:
|
||||
try:
|
||||
result = (
|
||||
result.replace(kw_prompt[:-1], "")
|
||||
.replace("user", "")
|
||||
.replace("model", "")
|
||||
.strip()
|
||||
)
|
||||
result = "{" + result.split("{")[-1].split("}")[0] + "}"
|
||||
keywords_data = json.loads(result)
|
||||
hl_keywords = keywords_data.get("high_level_keywords", [])
|
||||
ll_keywords = keywords_data.get("low_level_keywords", [])
|
||||
hl_keywords = ", ".join(hl_keywords)
|
||||
ll_keywords = ", ".join(ll_keywords)
|
||||
# Handle parsing error
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON parsing error: {e}")
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
if ll_keywords:
|
||||
low_level_context = await _build_local_query_context(
|
||||
ll_keywords,
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
|
||||
if hl_keywords:
|
||||
high_level_context = await _build_global_query_context(
|
||||
hl_keywords,
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
|
||||
context = combine_contexts(high_level_context, low_level_context)
|
||||
|
||||
if query_param.only_need_context:
|
||||
return context
|
||||
if context is None:
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
sys_prompt_temp = PROMPTS["rag_response"]
|
||||
sys_prompt = sys_prompt_temp.format(
|
||||
context_data=context, response_type=query_param.response_type
|
||||
)
|
||||
response = await use_model_func(
|
||||
query,
|
||||
system_prompt=sys_prompt,
|
||||
)
|
||||
if len(response) > len(sys_prompt):
|
||||
response = (
|
||||
response.replace(sys_prompt, "")
|
||||
.replace("user", "")
|
||||
.replace("model", "")
|
||||
.replace(query, "")
|
||||
.replace("<system>", "")
|
||||
.replace("</system>", "")
|
||||
.strip()
|
||||
)
|
||||
return response
|
||||
|
||||
|
||||
def combine_contexts(high_level_context, low_level_context):
|
||||
def combine_contexts(entities, relationships, sources):
|
||||
# Function to extract entities, relationships, and sources from context strings
|
||||
|
||||
def extract_sections(context):
|
||||
entities_match = re.search(
|
||||
r"-----Entities-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
|
||||
)
|
||||
relationships_match = re.search(
|
||||
r"-----Relationships-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
|
||||
)
|
||||
sources_match = re.search(
|
||||
r"-----Sources-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
|
||||
)
|
||||
|
||||
entities = entities_match.group(1) if entities_match else ""
|
||||
relationships = relationships_match.group(1) if relationships_match else ""
|
||||
sources = sources_match.group(1) if sources_match else ""
|
||||
|
||||
return entities, relationships, sources
|
||||
|
||||
# Extract sections from both contexts
|
||||
|
||||
if high_level_context is None:
|
||||
warnings.warn(
|
||||
"High Level context is None. Return empty High entity/relationship/source"
|
||||
)
|
||||
hl_entities, hl_relationships, hl_sources = "", "", ""
|
||||
else:
|
||||
hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context)
|
||||
|
||||
if low_level_context is None:
|
||||
warnings.warn(
|
||||
"Low Level context is None. Return empty Low entity/relationship/source"
|
||||
)
|
||||
ll_entities, ll_relationships, ll_sources = "", "", ""
|
||||
else:
|
||||
ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context)
|
||||
|
||||
hl_entities, ll_entities = entities[0], entities[1]
|
||||
hl_relationships, ll_relationships = relationships[0], relationships[1]
|
||||
hl_sources, ll_sources = sources[0], sources[1]
|
||||
# Combine and deduplicate the entities
|
||||
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
||||
|
||||
@@ -1068,21 +974,7 @@ def combine_contexts(high_level_context, low_level_context):
|
||||
# Combine and deduplicate the sources
|
||||
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
||||
|
||||
# Format the combined context
|
||||
return f"""
|
||||
-----Entities-----
|
||||
```csv
|
||||
{combined_entities}
|
||||
```
|
||||
-----Relationships-----
|
||||
```csv
|
||||
{combined_relationships}
|
||||
```
|
||||
-----Sources-----
|
||||
```csv
|
||||
{combined_sources}
|
||||
```
|
||||
"""
|
||||
return combined_entities, combined_relationships, combined_sources
|
||||
|
||||
|
||||
async def naive_query(
|
||||
@@ -1105,13 +997,15 @@ async def naive_query(
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
)
|
||||
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
|
||||
section = "--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
||||
section = "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
||||
if query_param.only_need_context:
|
||||
return section
|
||||
sys_prompt_temp = PROMPTS["naive_rag_response"]
|
||||
sys_prompt = sys_prompt_temp.format(
|
||||
content_data=section, response_type=query_param.response_type
|
||||
)
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
response = await use_model_func(
|
||||
query,
|
||||
system_prompt=sys_prompt,
|
||||
|
@@ -2,6 +2,7 @@ GRAPH_FIELD_SEP = "<SEP>"
|
||||
|
||||
PROMPTS = {}
|
||||
|
||||
PROMPTS["DEFAULT_LANGUAGE"] = "English"
|
||||
PROMPTS["DEFAULT_TUPLE_DELIMITER"] = "<|>"
|
||||
PROMPTS["DEFAULT_RECORD_DELIMITER"] = "##"
|
||||
PROMPTS["DEFAULT_COMPLETION_DELIMITER"] = "<|COMPLETE|>"
|
||||
@@ -11,6 +12,7 @@ PROMPTS["DEFAULT_ENTITY_TYPES"] = ["organization", "person", "geo", "event"]
|
||||
|
||||
PROMPTS["entity_extraction"] = """-Goal-
|
||||
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
|
||||
Use {language} as output language.
|
||||
|
||||
-Steps-
|
||||
1. Identify all entities. For each identified entity, extract the following information:
|
||||
@@ -38,7 +40,19 @@ Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_
|
||||
######################
|
||||
-Examples-
|
||||
######################
|
||||
Example 1:
|
||||
{examples}
|
||||
|
||||
#############################
|
||||
-Real Data-
|
||||
######################
|
||||
Entity_types: {entity_types}
|
||||
Text: {input_text}
|
||||
######################
|
||||
Output:
|
||||
"""
|
||||
|
||||
PROMPTS["entity_extraction_examples"] = [
|
||||
"""Example 1:
|
||||
|
||||
Entity_types: [person, technology, mission, organization, location]
|
||||
Text:
|
||||
@@ -62,8 +76,8 @@ Output:
|
||||
("relationship"{tuple_delimiter}"Jordan"{tuple_delimiter}"Cruz"{tuple_delimiter}"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order."{tuple_delimiter}"ideological conflict, rebellion"{tuple_delimiter}5){record_delimiter}
|
||||
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
|
||||
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
|
||||
#############################
|
||||
Example 2:
|
||||
#############################""",
|
||||
"""Example 2:
|
||||
|
||||
Entity_types: [person, technology, mission, organization, location]
|
||||
Text:
|
||||
@@ -80,8 +94,8 @@ Output:
|
||||
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Washington"{tuple_delimiter}"The team receives communications from Washington, which influences their decision-making process."{tuple_delimiter}"decision-making, external influence"{tuple_delimiter}7){record_delimiter}
|
||||
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
|
||||
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
|
||||
#############################
|
||||
Example 3:
|
||||
#############################""",
|
||||
"""Example 3:
|
||||
|
||||
Entity_types: [person, role, technology, organization, event, location, concept]
|
||||
Text:
|
||||
@@ -107,14 +121,8 @@ Output:
|
||||
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
|
||||
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
|
||||
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
|
||||
#############################
|
||||
-Real Data-
|
||||
######################
|
||||
Entity_types: {entity_types}
|
||||
Text: {input_text}
|
||||
######################
|
||||
Output:
|
||||
"""
|
||||
#############################""",
|
||||
]
|
||||
|
||||
PROMPTS[
|
||||
"summarize_entity_descriptions"
|
||||
@@ -123,6 +131,7 @@ Given one or two entities, and a list of descriptions, all related to the same e
|
||||
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
|
||||
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
|
||||
Make sure it is written in third person, and include the entity names so we the have full context.
|
||||
Use Chinese as output language.
|
||||
|
||||
#######
|
||||
-Data-
|
||||
@@ -169,6 +178,7 @@ Add sections and commentary to the response as appropriate for the length and fo
|
||||
PROMPTS["keywords_extraction"] = """---Role---
|
||||
|
||||
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
|
||||
Use Chinese as output language.
|
||||
|
||||
---Goal---
|
||||
|
||||
@@ -184,7 +194,20 @@ Given the query, list both high-level and low-level keywords. High-level keyword
|
||||
######################
|
||||
-Examples-
|
||||
######################
|
||||
Example 1:
|
||||
{examples}
|
||||
|
||||
#############################
|
||||
-Real Data-
|
||||
######################
|
||||
Query: {query}
|
||||
######################
|
||||
The `Output` should be human text, not unicode characters. Keep the same language as `Query`.
|
||||
Output:
|
||||
|
||||
"""
|
||||
|
||||
PROMPTS["keywords_extraction_examples"] = [
|
||||
"""Example 1:
|
||||
|
||||
Query: "How does international trade influence global economic stability?"
|
||||
################
|
||||
@@ -193,8 +216,8 @@ Output:
|
||||
"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],
|
||||
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
|
||||
}}
|
||||
#############################
|
||||
Example 2:
|
||||
#############################""",
|
||||
"""Example 2:
|
||||
|
||||
Query: "What are the environmental consequences of deforestation on biodiversity?"
|
||||
################
|
||||
@@ -203,8 +226,8 @@ Output:
|
||||
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
|
||||
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
|
||||
}}
|
||||
#############################
|
||||
Example 3:
|
||||
#############################""",
|
||||
"""Example 3:
|
||||
|
||||
Query: "What is the role of education in reducing poverty?"
|
||||
################
|
||||
@@ -213,14 +236,9 @@ Output:
|
||||
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
|
||||
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
|
||||
}}
|
||||
#############################
|
||||
-Real Data-
|
||||
######################
|
||||
Query: {query}
|
||||
######################
|
||||
Output:
|
||||
#############################""",
|
||||
]
|
||||
|
||||
"""
|
||||
|
||||
PROMPTS["naive_rag_response"] = """---Role---
|
||||
|
||||
|
@@ -47,10 +47,27 @@ class EmbeddingFunc:
|
||||
|
||||
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
||||
"""Locate the JSON string body from a string"""
|
||||
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
|
||||
if maybe_json_str is not None:
|
||||
return maybe_json_str.group(0)
|
||||
else:
|
||||
try:
|
||||
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
|
||||
if maybe_json_str is not None:
|
||||
maybe_json_str = maybe_json_str.group(0)
|
||||
maybe_json_str = maybe_json_str.replace("\\n", "")
|
||||
maybe_json_str = maybe_json_str.replace("\n", "")
|
||||
maybe_json_str = maybe_json_str.replace("'", '"')
|
||||
json.loads(maybe_json_str)
|
||||
return maybe_json_str
|
||||
except Exception:
|
||||
pass
|
||||
# try:
|
||||
# content = (
|
||||
# content.replace(kw_prompt[:-1], "")
|
||||
# .replace("user", "")
|
||||
# .replace("model", "")
|
||||
# .strip()
|
||||
# )
|
||||
# maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}"
|
||||
# json.loads(maybe_json_str)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user