Merge pull request #143 from thinkthinking/main
[feat] Add API server implementation and endpoints
This commit is contained in:
119
README.md
119
README.md
@@ -397,6 +397,125 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
## API Server Implementation
|
||||||
|
|
||||||
|
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
||||||
|
|
||||||
|
### Setting up the API Server
|
||||||
|
<details>
|
||||||
|
<summary>Click to expand setup instructions</summary>
|
||||||
|
|
||||||
|
1. First, ensure you have the required dependencies:
|
||||||
|
```bash
|
||||||
|
pip install fastapi uvicorn pydantic
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Set up your environment variables:
|
||||||
|
```bash
|
||||||
|
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Run the API server:
|
||||||
|
```bash
|
||||||
|
python examples/lightrag_api_openai_compatible_demo.py
|
||||||
|
```
|
||||||
|
|
||||||
|
The server will start on `http://0.0.0.0:8020`.
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### API Endpoints
|
||||||
|
|
||||||
|
The API server provides the following endpoints:
|
||||||
|
|
||||||
|
#### 1. Query Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Query endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/query`
|
||||||
|
- **Method:** POST
|
||||||
|
- **Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"query": "Your question here",
|
||||||
|
"mode": "hybrid" // Can be "naive", "local", "global", or "hybrid"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://127.0.0.1:8020/query" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 2. Insert Text Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Insert Text endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/insert`
|
||||||
|
- **Method:** POST
|
||||||
|
- **Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "Your text content here"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://127.0.0.1:8020/insert" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"text": "Content to be inserted into RAG"}'
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3. Insert File Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Insert File endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/insert_file`
|
||||||
|
- **Method:** POST
|
||||||
|
- **Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"file_path": "path/to/your/file.txt"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://127.0.0.1:8020/insert_file" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"file_path": "./book.txt"}'
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 4. Health Check Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Health Check endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/health`
|
||||||
|
- **Method:** GET
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X GET "http://127.0.0.1:8020/health"
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Configuration
|
||||||
|
|
||||||
|
The API server can be configured using environment variables:
|
||||||
|
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
|
||||||
|
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
|
||||||
|
|
||||||
|
### Error Handling
|
||||||
|
<details>
|
||||||
|
<summary>Click to view error handling details</summary>
|
||||||
|
|
||||||
|
The API includes comprehensive error handling:
|
||||||
|
- File not found errors (404)
|
||||||
|
- Processing errors (500)
|
||||||
|
- Supports multiple file encodings (UTF-8 and GBK)
|
||||||
|
</details>
|
||||||
|
|
||||||
## Evaluation
|
## Evaluation
|
||||||
### Dataset
|
### Dataset
|
||||||
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
|
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
|
||||||
|
164
examples/lightrag_api_openai_compatible_demo.py
Normal file
164
examples/lightrag_api_openai_compatible_demo.py
Normal file
@@ -0,0 +1,164 @@
|
|||||||
|
from fastapi import FastAPI, HTTPException
|
||||||
|
from pydantic import BaseModel
|
||||||
|
import os
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
import numpy as np
|
||||||
|
from typing import Optional
|
||||||
|
import asyncio
|
||||||
|
import nest_asyncio
|
||||||
|
|
||||||
|
# Apply nest_asyncio to solve event loop issues
|
||||||
|
nest_asyncio.apply()
|
||||||
|
|
||||||
|
DEFAULT_RAG_DIR = "index_default"
|
||||||
|
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||||
|
|
||||||
|
# Configure working directory
|
||||||
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||||
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
# LLM model function
|
||||||
|
|
||||||
|
|
||||||
|
async def llm_model_func(
|
||||||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
|
) -> str:
|
||||||
|
return await openai_complete_if_cache(
|
||||||
|
"gpt-4o-mini",
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
api_key="YOUR_API_KEY",
|
||||||
|
base_url="YourURL/v1",
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Embedding function
|
||||||
|
|
||||||
|
|
||||||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
|
return await openai_embedding(
|
||||||
|
texts,
|
||||||
|
model="text-embedding-3-large",
|
||||||
|
api_key="YOUR_API_KEY",
|
||||||
|
base_url="YourURL/v1",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize RAG instance
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Data models
|
||||||
|
|
||||||
|
|
||||||
|
class QueryRequest(BaseModel):
|
||||||
|
query: str
|
||||||
|
mode: str = "hybrid"
|
||||||
|
|
||||||
|
|
||||||
|
class InsertRequest(BaseModel):
|
||||||
|
text: str
|
||||||
|
|
||||||
|
|
||||||
|
class InsertFileRequest(BaseModel):
|
||||||
|
file_path: str
|
||||||
|
|
||||||
|
|
||||||
|
class Response(BaseModel):
|
||||||
|
status: str
|
||||||
|
data: Optional[str] = None
|
||||||
|
message: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
# API routes
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/query", response_model=Response)
|
||||||
|
async def query_endpoint(request: QueryRequest):
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
result = await loop.run_in_executor(
|
||||||
|
None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
|
||||||
|
)
|
||||||
|
return Response(status="success", data=result)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/insert", response_model=Response)
|
||||||
|
async def insert_endpoint(request: InsertRequest):
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
||||||
|
return Response(status="success", message="Text inserted successfully")
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/insert_file", response_model=Response)
|
||||||
|
async def insert_file(request: InsertFileRequest):
|
||||||
|
try:
|
||||||
|
# Check if file exists
|
||||||
|
if not os.path.exists(request.file_path):
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=404, detail=f"File not found: {request.file_path}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Read file content
|
||||||
|
try:
|
||||||
|
with open(request.file_path, "r", encoding="utf-8") as f:
|
||||||
|
content = f.read()
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
# If UTF-8 decoding fails, try other encodings
|
||||||
|
with open(request.file_path, "r", encoding="gbk") as f:
|
||||||
|
content = f.read()
|
||||||
|
|
||||||
|
# Insert file content
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||||
|
|
||||||
|
return Response(
|
||||||
|
status="success",
|
||||||
|
message=f"File content from {request.file_path} inserted successfully",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/health")
|
||||||
|
async def health_check():
|
||||||
|
return {"status": "healthy"}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8020)
|
||||||
|
|
||||||
|
# Usage example
|
||||||
|
# To run the server, use the following command in your terminal:
|
||||||
|
# python lightrag_api_openai_compatible_demo.py
|
||||||
|
|
||||||
|
# Example requests:
|
||||||
|
# 1. Query:
|
||||||
|
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
||||||
|
|
||||||
|
# 2. Insert text:
|
||||||
|
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
||||||
|
|
||||||
|
# 3. Insert file:
|
||||||
|
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
||||||
|
|
||||||
|
# 4. Health check:
|
||||||
|
# curl -X GET "http://127.0.0.1:8020/health"
|
@@ -85,9 +85,7 @@ class LightRAG:
|
|||||||
|
|
||||||
# LLM
|
# LLM
|
||||||
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
|
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
|
||||||
llm_model_name: str = (
|
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
||||||
"meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
|
||||||
)
|
|
||||||
llm_model_max_token_size: int = 32768
|
llm_model_max_token_size: int = 32768
|
||||||
llm_model_max_async: int = 16
|
llm_model_max_async: int = 16
|
||||||
|
|
||||||
|
31
setup.py
31
setup.py
@@ -1,6 +1,7 @@
|
|||||||
import setuptools
|
import setuptools
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
# Reading the long description from README.md
|
# Reading the long description from README.md
|
||||||
def read_long_description():
|
def read_long_description():
|
||||||
try:
|
try:
|
||||||
@@ -8,6 +9,7 @@ def read_long_description():
|
|||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
return "A description of LightRAG is currently unavailable."
|
return "A description of LightRAG is currently unavailable."
|
||||||
|
|
||||||
|
|
||||||
# Retrieving metadata from __init__.py
|
# Retrieving metadata from __init__.py
|
||||||
def retrieve_metadata():
|
def retrieve_metadata():
|
||||||
vars2find = ["__author__", "__version__", "__url__"]
|
vars2find = ["__author__", "__version__", "__url__"]
|
||||||
@@ -17,18 +19,26 @@ def retrieve_metadata():
|
|||||||
for line in f.readlines():
|
for line in f.readlines():
|
||||||
for v in vars2find:
|
for v in vars2find:
|
||||||
if line.startswith(v):
|
if line.startswith(v):
|
||||||
line = line.replace(" ", "").replace('"', "").replace("'", "").strip()
|
line = (
|
||||||
|
line.replace(" ", "")
|
||||||
|
.replace('"', "")
|
||||||
|
.replace("'", "")
|
||||||
|
.strip()
|
||||||
|
)
|
||||||
vars2readme[v] = line.split("=")[1]
|
vars2readme[v] = line.split("=")[1]
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
raise FileNotFoundError("Metadata file './lightrag/__init__.py' not found.")
|
raise FileNotFoundError("Metadata file './lightrag/__init__.py' not found.")
|
||||||
|
|
||||||
# Checking if all required variables are found
|
# Checking if all required variables are found
|
||||||
missing_vars = [v for v in vars2find if v not in vars2readme]
|
missing_vars = [v for v in vars2find if v not in vars2readme]
|
||||||
if missing_vars:
|
if missing_vars:
|
||||||
raise ValueError(f"Missing required metadata variables in __init__.py: {missing_vars}")
|
raise ValueError(
|
||||||
|
f"Missing required metadata variables in __init__.py: {missing_vars}"
|
||||||
|
)
|
||||||
|
|
||||||
return vars2readme
|
return vars2readme
|
||||||
|
|
||||||
|
|
||||||
# Reading dependencies from requirements.txt
|
# Reading dependencies from requirements.txt
|
||||||
def read_requirements():
|
def read_requirements():
|
||||||
deps = []
|
deps = []
|
||||||
@@ -36,9 +46,12 @@ def read_requirements():
|
|||||||
with open("./requirements.txt") as f:
|
with open("./requirements.txt") as f:
|
||||||
deps = [line.strip() for line in f if line.strip()]
|
deps = [line.strip() for line in f if line.strip()]
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print("Warning: 'requirements.txt' not found. No dependencies will be installed.")
|
print(
|
||||||
|
"Warning: 'requirements.txt' not found. No dependencies will be installed."
|
||||||
|
)
|
||||||
return deps
|
return deps
|
||||||
|
|
||||||
|
|
||||||
metadata = retrieve_metadata()
|
metadata = retrieve_metadata()
|
||||||
long_description = read_long_description()
|
long_description = read_long_description()
|
||||||
requirements = read_requirements()
|
requirements = read_requirements()
|
||||||
@@ -51,7 +64,9 @@ setuptools.setup(
|
|||||||
description="LightRAG: Simple and Fast Retrieval-Augmented Generation",
|
description="LightRAG: Simple and Fast Retrieval-Augmented Generation",
|
||||||
long_description=long_description,
|
long_description=long_description,
|
||||||
long_description_content_type="text/markdown",
|
long_description_content_type="text/markdown",
|
||||||
packages=setuptools.find_packages(exclude=("tests*", "docs*")), # Automatically find packages
|
packages=setuptools.find_packages(
|
||||||
|
exclude=("tests*", "docs*")
|
||||||
|
), # Automatically find packages
|
||||||
classifiers=[
|
classifiers=[
|
||||||
"Development Status :: 4 - Beta",
|
"Development Status :: 4 - Beta",
|
||||||
"Programming Language :: Python :: 3",
|
"Programming Language :: Python :: 3",
|
||||||
@@ -66,6 +81,8 @@ setuptools.setup(
|
|||||||
project_urls={ # Additional project metadata
|
project_urls={ # Additional project metadata
|
||||||
"Documentation": metadata.get("__url__", ""),
|
"Documentation": metadata.get("__url__", ""),
|
||||||
"Source": metadata.get("__url__", ""),
|
"Source": metadata.get("__url__", ""),
|
||||||
"Tracker": f"{metadata.get('__url__', '')}/issues" if metadata.get("__url__") else ""
|
"Tracker": f"{metadata.get('__url__', '')}/issues"
|
||||||
|
if metadata.get("__url__")
|
||||||
|
else "",
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
Reference in New Issue
Block a user