update
This commit is contained in:
@@ -97,11 +97,7 @@ class LightRAG:
|
|||||||
addon_params: dict = field(default_factory=dict)
|
addon_params: dict = field(default_factory=dict)
|
||||||
convert_response_to_json_func: callable = convert_response_to_json
|
convert_response_to_json_func: callable = convert_response_to_json
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
# use proxy
|
|
||||||
os.environ['http_proxy'] = 'http://127.0.0.1:7890'
|
|
||||||
os.environ['https_proxy'] = 'http://127.0.0.1:7890'
|
|
||||||
|
|
||||||
log_file = os.path.join(self.working_dir, "lightrag.log")
|
log_file = os.path.join(self.working_dir, "lightrag.log")
|
||||||
set_logger(log_file)
|
set_logger(log_file)
|
||||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||||
|
@@ -17,7 +17,7 @@ from .utils import compute_args_hash, wrap_embedding_func_with_attrs
|
|||||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||||
)
|
)
|
||||||
async def openai_complete_if_cache(
|
async def openai_complete_if_cache(
|
||||||
model, prompt, api_key='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'
|
model, prompt, api_key=''
|
||||||
, system_prompt=None, history_messages=[], **kwargs
|
, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
openai_async_client = AsyncOpenAI(api_key=api_key)
|
openai_async_client = AsyncOpenAI(api_key=api_key)
|
||||||
@@ -72,26 +72,13 @@ async def gpt_4o_mini_complete(
|
|||||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||||
)
|
)
|
||||||
async def openai_embedding(texts: list[str]) -> np.ndarray:
|
async def openai_embedding(texts: list[str], api_key='') -> np.ndarray:
|
||||||
api_key = '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'
|
|
||||||
openai_async_client = AsyncOpenAI(api_key=api_key)
|
openai_async_client = AsyncOpenAI(api_key=api_key)
|
||||||
response = await openai_async_client.embeddings.create(
|
response = await openai_async_client.embeddings.create(
|
||||||
model="text-embedding-3-small", input=texts, encoding_format="float"
|
model="text-embedding-3-small", input=texts, encoding_format="float"
|
||||||
)
|
)
|
||||||
return np.array([dp.embedding for dp in response.data])
|
return np.array([dp.embedding for dp in response.data])
|
||||||
|
|
||||||
async def moonshot_complete(
|
|
||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
||||||
) -> str:
|
|
||||||
return await openai_complete_if_cache(
|
|
||||||
"moonshot-v1-128k",
|
|
||||||
prompt,
|
|
||||||
api_key='sk-OsvLvHgFFH3tz6Yhym3OAhcTfZ9y7rHEgQ3JDLmnuLpTw9C0',
|
|
||||||
system_prompt=system_prompt,
|
|
||||||
history_messages=history_messages,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import asyncio
|
import asyncio
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user