fix demo
This commit is contained in:
@@ -10,7 +10,7 @@ import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
||||
from lightrag.storage import JsonKVStorage
|
||||
from lightrag.kg.json_kv_impl import JsonKVStorage
|
||||
from lightrag.namespace import NameSpace
|
||||
|
||||
load_dotenv()
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from contextlib import asynccontextmanager
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -8,12 +9,12 @@ from typing import Optional
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
import aiofiles
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
|
||||
DEFAULT_INPUT_FILE = "book.txt"
|
||||
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
||||
@@ -28,23 +29,41 @@ if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:9b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=8192,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
async def init():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:9b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=8192,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
# Add initialization code
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
global rag
|
||||
rag = await init()
|
||||
print("done!")
|
||||
yield
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
||||
)
|
||||
|
||||
|
||||
# Data models
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from contextlib import asynccontextmanager
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -8,6 +9,7 @@ import numpy as np
|
||||
from typing import Optional
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
@@ -71,16 +73,35 @@ async def get_embedding_dim():
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
async def init():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
global rag
|
||||
rag = await init()
|
||||
print("done!")
|
||||
yield
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
||||
)
|
||||
|
||||
# Data models
|
||||
|
||||
|
@@ -1,101 +0,0 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
|
||||
print(f"BASE_URL: {BASE_URL}")
|
||||
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
|
||||
print(f"API_KEY: {API_KEY}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
model=LLM_MODEL,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
# Embedding function
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
texts=texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"{embedding_dim=}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
@@ -16,6 +16,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
|
||||
print(os.getcwd())
|
||||
@@ -113,6 +114,9 @@ async def init():
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from dotenv import load_dotenv
|
||||
import logging
|
||||
from openai import AzureOpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@@ -90,6 +91,9 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
rag.initialize_storages()
|
||||
initialize_pipeline_status()
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
||||
|
@@ -8,6 +8,12 @@ import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||
|
||||
@@ -15,22 +21,31 @@ WORKING_DIR = "./dickens"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
for mode in ["naive", "local", "global", "hybrid"]:
|
||||
print("\n+-" + "-" * len(mode) + "-+")
|
||||
print(f"| {mode.capitalize()} |")
|
||||
print("+-" + "-" * len(mode) + "-+\n")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode=mode))
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
for mode in ["naive", "local", "global", "hybrid"]:
|
||||
print("\n+-" + "-" * len(mode) + "-+")
|
||||
print(f"| {mode.capitalize()} |")
|
||||
print("+-" + "-" * len(mode) + "-+\n")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode=mode))
|
||||
)
|
||||
|
@@ -8,6 +8,12 @@ from dotenv import load_dotenv
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
load_dotenv()
|
||||
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||||
@@ -60,25 +66,37 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return embeddings
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
file_path = "story.txt"
|
||||
with open(file_path, "r") as file:
|
||||
text = file.read()
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
rag.insert(text)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
file_path = "story.txt"
|
||||
with open(file_path, "r") as file:
|
||||
text = file.read()
|
||||
|
||||
response = rag.query(
|
||||
query="What is the main theme of the story?",
|
||||
param=QueryParam(mode="hybrid", top_k=5, response_type="single line"),
|
||||
)
|
||||
rag.insert(text)
|
||||
|
||||
print(response)
|
||||
response = rag.query(
|
||||
query="What is the main theme of the story?",
|
||||
param=QueryParam(mode="hybrid", top_k=5, response_type="single line"),
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -4,51 +4,68 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.hf import hf_model_complete, hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=hf_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=hf_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
return rag
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,115 +0,0 @@
|
||||
import numpy as np
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm.jina import jina_embed
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await jina_embed(texts, api_key="YourJinaAPIKey")
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"solar-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
async def lightraginsert(file_path, semaphore):
|
||||
async with semaphore:
|
||||
try:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
except UnicodeDecodeError:
|
||||
# If UTF-8 decoding fails, try other encodings
|
||||
with open(file_path, "r", encoding="gbk") as f:
|
||||
content = f.read()
|
||||
await rag.ainsert(content)
|
||||
|
||||
|
||||
async def process_files(directory, concurrency_limit):
|
||||
semaphore = asyncio.Semaphore(concurrency_limit)
|
||||
tasks = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for f in files:
|
||||
file_path = os.path.join(root, f)
|
||||
if f.startswith("."):
|
||||
continue
|
||||
tasks.append(lightraginsert(file_path, semaphore))
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
asyncio.run(process_files(WORKING_DIR, concurrency_limit=4))
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global"),
|
||||
)
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid"),
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
@@ -8,6 +8,11 @@ from lightrag.utils import EmbeddingFunc
|
||||
from llama_index.llms.openai import OpenAI
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = "./index_default"
|
||||
@@ -76,38 +81,53 @@ async def get_embedding_dim():
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -8,6 +8,11 @@ from lightrag.utils import EmbeddingFunc
|
||||
from llama_index.llms.litellm import LiteLLM
|
||||
from llama_index.embeddings.litellm import LiteLLMEmbedding
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = "./index_default"
|
||||
@@ -79,38 +84,53 @@ async def get_embedding_dim():
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -5,6 +5,12 @@ from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
|
||||
from lightrag.llm.hf import hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -35,46 +41,59 @@ async def lmdeploy_model_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=lmdeploy_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=lmdeploy_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,5 +1,9 @@
|
||||
import os
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import (
|
||||
openai_complete_if_cache,
|
||||
@@ -7,10 +11,12 @@ from lightrag.llm import (
|
||||
)
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# for custom llm_model_func
|
||||
from lightrag.utils import locate_json_string_body_from_string
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
@@ -91,42 +97,37 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# lightRAG class during indexing
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512, # maximum token size, somehow it's still exceed maximum number of token
|
||||
# so truncate (trunc) parameter on embedding_func will handle it and try to examine the tokenizer used in LightRAG
|
||||
# so you can adjust to be able to fit the NVIDIA model (future work)
|
||||
func=indexing_embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
async def main():
|
||||
try:
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# lightRAG class during indexing
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512, # maximum token size, somehow it's still exceed maximum number of token
|
||||
# so truncate (trunc) parameter on embedding_func will handle it and try to examine the tokenizer used in LightRAG
|
||||
# so you can adjust to be able to fit the NVIDIA model (future work)
|
||||
func=indexing_embedding_func,
|
||||
),
|
||||
)
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# reading file
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
# redefine rag to change embedding into query type
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=query_embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
# Perform naive search
|
||||
print("==============Naive===============")
|
||||
print(
|
||||
|
@@ -1,4 +1,8 @@
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
@@ -6,6 +10,7 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens_age"
|
||||
|
||||
@@ -22,59 +27,72 @@ os.environ["AGE_POSTGRES_HOST"] = "localhost"
|
||||
os.environ["AGE_POSTGRES_PORT"] = "5455"
|
||||
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="llama3.1:8b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="llama3.1:8b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
),
|
||||
graph_storage="AGEStorage",
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
graph_storage="AGEStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,10 +1,14 @@
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
import os
|
||||
import inspect
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -13,58 +17,71 @@ logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:2b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:2b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -12,6 +12,7 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens_gremlin"
|
||||
|
||||
@@ -31,59 +32,72 @@ os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g"
|
||||
os.environ["GREMLIN_USER"] = ""
|
||||
os.environ["GREMLIN_PASSWORD"] = ""
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="llama3.1:8b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="llama3.1:8b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
),
|
||||
graph_storage="GremlinStorage",
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
graph_storage="GremlinStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -2,6 +2,11 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -27,30 +32,59 @@ os.environ["MILVUS_USER"] = "root"
|
||||
os.environ["MILVUS_PASSWORD"] = "root"
|
||||
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:14b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:14b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
|
||||
),
|
||||
),
|
||||
),
|
||||
kv_storage="MongoKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
)
|
||||
kv_storage="MongoKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
)
|
||||
|
||||
file = "./book.txt"
|
||||
with open(file, "r") as f:
|
||||
rag.insert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -52,21 +53,28 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
async def main():
|
||||
try:
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -52,25 +53,33 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_cache_config={
|
||||
"enabled": True,
|
||||
"similarity_threshold": 0.90,
|
||||
},
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
try:
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_cache_config={
|
||||
"enabled": True,
|
||||
"similarity_threshold": 0.90,
|
||||
},
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -1,9 +1,11 @@
|
||||
import inspect
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import openai_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc, always_get_an_event_loop
|
||||
from lightrag import QueryParam
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -13,42 +15,54 @@ if not os.path.exists(WORKING_DIR):
|
||||
print(f"WorkingDir: {WORKING_DIR}")
|
||||
|
||||
api_key = "empty"
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=openai_complete,
|
||||
llm_model_name="qwen2.5-14b-instruct@4bit",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embed(
|
||||
texts=texts,
|
||||
model="text-embedding-bge-m3",
|
||||
base_url="http://127.0.0.1:1234/v1",
|
||||
api_key=api_key,
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=openai_complete,
|
||||
llm_model_name="qwen2.5-14b-instruct@4bit",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embed(
|
||||
texts=texts,
|
||||
model="text-embedding-bge-m3",
|
||||
base_url="http://127.0.0.1:1234/v1",
|
||||
api_key=api_key,
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
if chunk:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
loop = always_get_an_event_loop()
|
||||
if inspect.isasyncgen(resp):
|
||||
loop.run_until_complete(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
loop = always_get_an_event_loop()
|
||||
if inspect.isasyncgen(resp):
|
||||
loop.run_until_complete(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
@@ -1,40 +1,54 @@
|
||||
import os
|
||||
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=openai_embed,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
# llm_model_func=gpt_4o_complete
|
||||
)
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=openai_embed,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
# llm_model_func=gpt_4o_complete
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
return rag
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -52,7 +53,7 @@ async def create_embedding_function_instance():
|
||||
async def initialize_rag():
|
||||
embedding_func_instance = await create_embedding_function_instance()
|
||||
|
||||
return LightRAG(
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
@@ -60,14 +61,38 @@ async def initialize_rag():
|
||||
log_level="DEBUG",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
# Run the initialization
|
||||
rag = asyncio.run(initialize_rag())
|
||||
return rag
|
||||
|
||||
with open("book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,7 +1,9 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -48,23 +50,52 @@ embedding_func = EmbeddingFunc(
|
||||
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
|
||||
),
|
||||
)
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
llm_model_max_token_size=32768,
|
||||
embedding_func=embedding_func,
|
||||
chunk_token_size=512,
|
||||
chunk_overlap_token_size=256,
|
||||
kv_storage="RedisKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
doc_status_storage="RedisKVStorage",
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
llm_model_max_token_size=32768,
|
||||
embedding_func=embedding_func,
|
||||
chunk_token_size=512,
|
||||
chunk_overlap_token_size=256,
|
||||
kv_storage="RedisKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
doc_status_storage="RedisKVStorage",
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
file = "../book.txt"
|
||||
with open(file, "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
return rag
|
||||
|
||||
|
||||
print(rag.query("谁会3D建模 ?", param=QueryParam(mode="mix")))
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -6,6 +6,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
print(os.getcwd())
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
@@ -63,41 +64,48 @@ async def get_embedding_dim():
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
async def initialize_rag():
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
rag = LightRAG(
|
||||
# log_level="DEBUG",
|
||||
working_dir=WORKING_DIR,
|
||||
entity_extract_max_gleaning=1,
|
||||
enable_llm_cache=True,
|
||||
enable_llm_cache_for_entity_extract=True,
|
||||
embedding_cache_config=None, # {"enabled": True,"similarity_threshold": 0.90},
|
||||
chunk_token_size=CHUNK_TOKEN_SIZE,
|
||||
llm_model_max_token_size=MAX_TOKENS,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=500,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage="OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
addon_params={
|
||||
"example_number": 1,
|
||||
"language": "Simplfied Chinese",
|
||||
"entity_types": ["organization", "person", "geo", "event"],
|
||||
"insert_batch_size": 2,
|
||||
},
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
try:
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
rag = LightRAG(
|
||||
# log_level="DEBUG",
|
||||
working_dir=WORKING_DIR,
|
||||
entity_extract_max_gleaning=1,
|
||||
enable_llm_cache=True,
|
||||
enable_llm_cache_for_entity_extract=True,
|
||||
embedding_cache_config=None, # {"enabled": True,"similarity_threshold": 0.90},
|
||||
chunk_token_size=CHUNK_TOKEN_SIZE,
|
||||
llm_model_max_token_size=MAX_TOKENS,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=500,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage="OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
addon_params={
|
||||
"example_number": 1,
|
||||
"language": "Simplfied Chinese",
|
||||
"entity_types": ["organization", "person", "geo", "event"],
|
||||
"insert_batch_size": 2,
|
||||
},
|
||||
)
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -5,6 +5,7 @@ from lightrag.llm.openai import openai_complete_if_cache
|
||||
from lightrag.llm.siliconcloud import siliconcloud_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -46,35 +47,48 @@ async def test_funcs():
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768, max_token_size=512, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768, max_token_size=512, func=embedding_func
|
||||
),
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -54,33 +55,40 @@ async def get_embedding_dim():
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
async def initialize_rag():
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use TiDB DB as the KV/vector
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
chunk_token_size=512,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=embedding_func,
|
||||
),
|
||||
kv_storage="TiDBKVStorage",
|
||||
vector_storage="TiDBVectorDBStorage",
|
||||
graph_storage="TiDBGraphStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
try:
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use TiDB DB as the KV/vector
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
chunk_token_size=512,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=embedding_func,
|
||||
),
|
||||
kv_storage="TiDBKVStorage",
|
||||
vector_storage="TiDBVectorDBStorage",
|
||||
graph_storage="TiDBGraphStorage",
|
||||
)
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform search in different modes
|
||||
modes = ["naive", "local", "global", "hybrid"]
|
||||
|
@@ -1,10 +1,12 @@
|
||||
import os
|
||||
import logging
|
||||
import asyncio
|
||||
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -17,39 +19,51 @@ api_key = os.environ.get("ZHIPUAI_API_KEY")
|
||||
if api_key is None:
|
||||
raise Exception("Please set ZHIPU_API_KEY in your environment")
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
llm_model_name="glm-4-flashx", # Using the most cost/performance balance model, but you can change it here.
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=2048, # Zhipu embedding-3 dimension
|
||||
max_token_size=8192,
|
||||
func=lambda texts: zhipu_embedding(texts),
|
||||
),
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
llm_model_name="glm-4-flashx", # Using the most cost/performance balance model, but you can change it here.
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=2048, # Zhipu embedding-3 dimension
|
||||
max_token_size=8192,
|
||||
func=lambda texts: zhipu_embedding(texts),
|
||||
),
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
return rag
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -8,6 +8,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.zhipu import zhipu_complete
|
||||
from lightrag.llm.ollama import ollama_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
load_dotenv()
|
||||
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||||
@@ -27,8 +28,7 @@ os.environ["POSTGRES_USER"] = "rag"
|
||||
os.environ["POSTGRES_PASSWORD"] = "rag"
|
||||
os.environ["POSTGRES_DATABASE"] = "rag"
|
||||
|
||||
|
||||
async def main():
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
@@ -50,9 +50,17 @@ async def main():
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
await rag.initialize_storages()
|
||||
|
||||
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from dotenv import load_dotenv
|
||||
import logging
|
||||
from openai import AzureOpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@@ -79,25 +80,32 @@ async def test_funcs():
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
embedding_dimension = 3072
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
||||
rag.insert([book1.read(), book2.read()])
|
||||
return rag
|
||||
|
||||
|
||||
# Example function demonstrating the new query_with_separate_keyword_extraction usage
|
||||
async def run_example():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
||||
rag.insert([book1.read(), book2.read()])
|
||||
query = "What are the top themes in this story?"
|
||||
prompt = "Please simplify the response for a young audience."
|
||||
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
@@ -12,31 +13,45 @@ WORKING_DIR = "./dickens"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
return rag
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -67,7 +68,7 @@ async def create_embedding_function_instance():
|
||||
async def initialize_rag():
|
||||
embedding_func_instance = await create_embedding_function_instance()
|
||||
if CHROMADB_USE_LOCAL_PERSISTENT:
|
||||
return LightRAG(
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
@@ -87,7 +88,7 @@ async def initialize_rag():
|
||||
},
|
||||
)
|
||||
else:
|
||||
return LightRAG(
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
@@ -112,28 +113,36 @@ async def initialize_rag():
|
||||
)
|
||||
|
||||
|
||||
# Run the initialization
|
||||
rag = asyncio.run(initialize_rag())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# rag.insert(f.read())
|
||||
return rag
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import logging
|
||||
import asyncio
|
||||
import numpy as np
|
||||
|
||||
from dotenv import load_dotenv
|
||||
@@ -8,7 +9,9 @@ from sentence_transformers import SentenceTransformer
|
||||
from openai import AzureOpenAI
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
# Configure Logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@@ -55,11 +58,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
return embeddings
|
||||
|
||||
|
||||
def main():
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
# Initialize LightRAG with the LLM model function and embedding function
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -74,6 +73,15 @@ def main():
|
||||
},
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
# Insert the custom chunks into LightRAG
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -14,33 +15,46 @@ WORKING_DIR = "./local_neo4jWorkDir"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="Neo4JStorage",
|
||||
log_level="INFO",
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="Neo4JStorage",
|
||||
log_level="INFO",
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
return rag
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -18,6 +18,7 @@
|
||||
"from lightrag import LightRAG, QueryParam\n",
|
||||
"from lightrag.llm.openai import openai_complete_if_cache, openai_embed\n",
|
||||
"from lightrag.utils import EmbeddingFunc\n",
|
||||
"from lightrag.kg.shared_storage import initialize_pipeline_status\n",
|
||||
"import nest_asyncio"
|
||||
]
|
||||
},
|
||||
@@ -25,7 +26,9 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "dd17956ec322b361",
|
||||
"metadata": {},
|
||||
"source": "#### split by character"
|
||||
"source": [
|
||||
"#### split by character"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
@@ -109,14 +112,26 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rag = LightRAG(\n",
|
||||
" working_dir=WORKING_DIR,\n",
|
||||
" llm_model_func=llm_model_func,\n",
|
||||
" embedding_func=EmbeddingFunc(\n",
|
||||
" embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
|
||||
" ),\n",
|
||||
" chunk_token_size=512,\n",
|
||||
")"
|
||||
"import asyncio\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()\n",
|
||||
"\n",
|
||||
"async def initialize_rag():\n",
|
||||
" rag = LightRAG(\n",
|
||||
" working_dir=WORKING_DIR,\n",
|
||||
" llm_model_func=llm_model_func,\n",
|
||||
" embedding_func=EmbeddingFunc(\n",
|
||||
" embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
|
||||
" ),\n",
|
||||
" chunk_token_size=512,\n",
|
||||
" )\n",
|
||||
" await rag.initialize_storages()\n",
|
||||
" await initialize_pipeline_status()\n",
|
||||
"\n",
|
||||
" return rag\n",
|
||||
"\n",
|
||||
"rag = asyncio.run(initialize_rag())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -908,7 +923,9 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "4e5bfad24cb721a8",
|
||||
"metadata": {},
|
||||
"source": "#### split by character only"
|
||||
"source": [
|
||||
"#### split by character only"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
|
@@ -1,8 +1,10 @@
|
||||
import os
|
||||
import time
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Working directory and the directory path for text files
|
||||
WORKING_DIR = "./dickens"
|
||||
@@ -12,17 +14,22 @@ TEXT_FILES_DIR = "/llm/mt"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
# Initialize LightRAG
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:3b-instruct-max-context",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(texts, embed_model="nomic-embed-text"),
|
||||
),
|
||||
)
|
||||
async def initialize_rag():
|
||||
# Initialize LightRAG
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:3b-instruct-max-context",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(texts, embed_model="nomic-embed-text"),
|
||||
),
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
# Read all .txt files from the TEXT_FILES_DIR directory
|
||||
texts = []
|
||||
@@ -47,58 +54,65 @@ def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||||
raise RuntimeError("Failed to insert texts after multiple retries.")
|
||||
|
||||
|
||||
insert_texts_with_retry(rag, texts)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Perform different types of queries and handle potential errors
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
insert_texts_with_retry(rag, texts)
|
||||
|
||||
# Perform different types of queries and handle potential errors
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing naive search: {e}")
|
||||
except Exception as e:
|
||||
print(f"Error performing naive search: {e}")
|
||||
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing local search: {e}")
|
||||
except Exception as e:
|
||||
print(f"Error performing local search: {e}")
|
||||
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing global search: {e}")
|
||||
except Exception as e:
|
||||
print(f"Error performing global search: {e}")
|
||||
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
try:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing hybrid search: {e}")
|
||||
except Exception as e:
|
||||
print(f"Error performing hybrid search: {e}")
|
||||
|
||||
|
||||
# Function to clear VRAM resources
|
||||
def clear_vram():
|
||||
os.system("sudo nvidia-smi --gpu-reset")
|
||||
# Function to clear VRAM resources
|
||||
def clear_vram():
|
||||
os.system("sudo nvidia-smi --gpu-reset")
|
||||
|
||||
|
||||
# Regularly clear VRAM to prevent overflow
|
||||
clear_vram_interval = 3600 # Clear once every hour
|
||||
start_time = time.time()
|
||||
# Regularly clear VRAM to prevent overflow
|
||||
clear_vram_interval = 3600 # Clear once every hour
|
||||
start_time = time.time()
|
||||
|
||||
while True:
|
||||
current_time = time.time()
|
||||
if current_time - start_time > clear_vram_interval:
|
||||
clear_vram()
|
||||
start_time = current_time
|
||||
time.sleep(60) # Check the time every minute
|
||||
while True:
|
||||
current_time = time.time()
|
||||
if current_time - start_time > clear_vram_interval:
|
||||
clear_vram()
|
||||
start_time = current_time
|
||||
time.sleep(60) # Check the time every minute
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user