fix demo
This commit is contained in:
@@ -2,6 +2,11 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -27,30 +32,59 @@ os.environ["MILVUS_USER"] = "root"
|
||||
os.environ["MILVUS_PASSWORD"] = "root"
|
||||
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:14b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:14b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
|
||||
),
|
||||
),
|
||||
),
|
||||
kv_storage="MongoKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
)
|
||||
kv_storage="MongoKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
)
|
||||
|
||||
file = "./book.txt"
|
||||
with open(file, "r") as f:
|
||||
rag.insert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user