This commit is contained in:
zrguo
2025-03-03 18:33:42 +08:00
parent 887388c317
commit 1611400854
41 changed files with 1390 additions and 1301 deletions

View File

@@ -2,6 +2,11 @@ import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
from lightrag.utils import EmbeddingFunc
import asyncio
import nest_asyncio
nest_asyncio.apply()
from lightrag.kg.shared_storage import initialize_pipeline_status
# WorkingDir
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
@@ -27,30 +32,59 @@ os.environ["MILVUS_USER"] = "root"
os.environ["MILVUS_PASSWORD"] = "root"
os.environ["MILVUS_DB_NAME"] = "lightrag"
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="qwen2.5:14b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: ollama_embed(
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="qwen2.5:14b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: ollama_embed(
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
),
),
),
kv_storage="MongoKVStorage",
graph_storage="Neo4JStorage",
vector_storage="MilvusVectorDBStorage",
)
kv_storage="MongoKVStorage",
graph_storage="Neo4JStorage",
vector_storage="MilvusVectorDBStorage",
)
file = "./book.txt"
with open(file, "r") as f:
rag.insert(f.read())
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Insert example text
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Test different query modes
print("\nNaive Search:")
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
print("\nLocal Search:")
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
print("\nGlobal Search:")
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
print("\nHybrid Search:")
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)
if __name__ == "__main__":
main()