This commit is contained in:
zrguo
2025-03-03 18:33:42 +08:00
parent 887388c317
commit 1611400854
41 changed files with 1390 additions and 1301 deletions

View File

@@ -1,10 +1,12 @@
import os
import logging
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
WORKING_DIR = "./dickens"
@@ -17,39 +19,51 @@ api_key = os.environ.get("ZHIPUAI_API_KEY")
if api_key is None:
raise Exception("Please set ZHIPU_API_KEY in your environment")
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=zhipu_complete,
llm_model_name="glm-4-flashx", # Using the most cost/performance balance model, but you can change it here.
llm_model_max_async=4,
llm_model_max_token_size=32768,
embedding_func=EmbeddingFunc(
embedding_dim=2048, # Zhipu embedding-3 dimension
max_token_size=8192,
func=lambda texts: zhipu_embedding(texts),
),
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=zhipu_complete,
llm_model_name="glm-4-flashx", # Using the most cost/performance balance model, but you can change it here.
llm_model_max_async=4,
llm_model_max_token_size=32768,
embedding_func=EmbeddingFunc(
embedding_dim=2048, # Zhipu embedding-3 dimension
max_token_size=8192,
func=lambda texts: zhipu_embedding(texts),
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
return rag
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)
if __name__ == "__main__":
main()