fix demo
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -57,7 +57,7 @@ ignore_this.txt
|
||||
*.ignore.*
|
||||
|
||||
# Project-specific files
|
||||
dickens/
|
||||
dickens*/
|
||||
book.txt
|
||||
lightrag-dev/
|
||||
gui/
|
||||
|
123
README.md
123
README.md
@@ -102,15 +102,26 @@ Use the below Python snippet (in a script) to initialize LightRAG and perform qu
|
||||
|
||||
```python
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir="your/path",
|
||||
embedding_func=openai_embed,
|
||||
llm_model_func=gpt_4o_mini_complete
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
# Insert text
|
||||
rag.insert("Your text")
|
||||
|
||||
@@ -129,6 +140,9 @@ rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode=mode)
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### Query Param
|
||||
@@ -190,6 +204,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -199,6 +214,11 @@ rag = LightRAG(
|
||||
func=embedding_func
|
||||
)
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
```
|
||||
</details>
|
||||
|
||||
@@ -210,10 +230,6 @@ rag = LightRAG(
|
||||
See `lightrag_hf_demo.py`
|
||||
|
||||
```python
|
||||
from lightrag.llm import hf_model_complete, hf_embed
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# Initialize LightRAG with Hugging Face model
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
@@ -242,9 +258,6 @@ If you want to use Ollama models, you need to pull model you plan to use and emb
|
||||
Then you only need to set LightRAG as follows:
|
||||
|
||||
```python
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# Initialize LightRAG with Ollama model
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
@@ -325,11 +338,14 @@ LightRAG supports integration with LlamaIndex.
|
||||
|
||||
```python
|
||||
# Using LlamaIndex with direct OpenAI access
|
||||
import asyncio
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
from llama_index.llms.openai import OpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir="your/path",
|
||||
llm_model_func=llama_index_complete_if_cache, # LlamaIndex-compatible completion function
|
||||
@@ -339,6 +355,41 @@ rag = LightRAG(
|
||||
func=lambda texts: llama_index_embed(texts, embed_model=embed_model)
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
#### For detailed documentation and examples, see:
|
||||
@@ -353,11 +404,6 @@ rag = LightRAG(
|
||||
LightRAG now supports multi-turn dialogue through the conversation history feature. Here's how to use it:
|
||||
|
||||
```python
|
||||
from lightrag import LightRAG, QueryParam
|
||||
|
||||
# Initialize LightRAG
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
|
||||
# Create conversation history
|
||||
conversation_history = [
|
||||
{"role": "user", "content": "What is the main character's attitude towards Christmas?"},
|
||||
@@ -387,11 +433,6 @@ response = rag.query(
|
||||
LightRAG now supports custom prompts for fine-tuned control over the system's behavior. Here's how to use it:
|
||||
|
||||
```python
|
||||
from lightrag import LightRAG, QueryParam
|
||||
|
||||
# Initialize LightRAG
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
|
||||
# Create query parameters
|
||||
query_param = QueryParam(
|
||||
mode="hybrid", # or other mode: "local", "global", "hybrid", "mix" and "naive"
|
||||
@@ -456,16 +497,6 @@ rag.query_with_separate_keyword_extraction(
|
||||
<summary> <b>Insert Custom KG</b> </summary>
|
||||
|
||||
```python
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
custom_kg = {
|
||||
"entities": [
|
||||
{
|
||||
@@ -534,6 +565,7 @@ rag = LightRAG(
|
||||
"insert_batch_size": 20 # Process 20 documents per batch
|
||||
}
|
||||
)
|
||||
|
||||
rag.insert(["TEXT1", "TEXT2", "TEXT3", ...]) # Documents will be processed in batches of 20
|
||||
```
|
||||
|
||||
@@ -560,27 +592,6 @@ rag.insert(["TEXT1", "TEXT2",...], ids=["ID_FOR_TEXT1", "ID_FOR_TEXT2"])
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Incremental Insert</b></summary>
|
||||
|
||||
```python
|
||||
# Incremental Insert: Insert new documents into an existing LightRAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
with open("./newText.txt") as f:
|
||||
rag.insert(f.read())
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Insert using Pipeline</b></summary>
|
||||
|
||||
@@ -592,6 +603,7 @@ And using a routine to process news documents.
|
||||
|
||||
```python
|
||||
rag = LightRAG(..)
|
||||
|
||||
await rag.apipeline_enqueue_documents(input)
|
||||
# Your routine in loop
|
||||
await rag.apipeline_process_enqueue_documents(input)
|
||||
@@ -633,8 +645,6 @@ export NEO4J_PASSWORD="password"
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
# Initialize LightRAG with Neo4J implementation.
|
||||
WORKING_DIR = "./local_neo4jWorkDir"
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
@@ -706,7 +716,7 @@ You can also install `faiss-gpu` if you have GPU support.
|
||||
|
||||
- Here we are using `sentence-transformers` but you can also use `OpenAIEmbedding` model with `3072` dimensions.
|
||||
|
||||
```
|
||||
```python
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
model = SentenceTransformer('all-MiniLM-L6-v2')
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
@@ -733,17 +743,6 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
## Delete
|
||||
|
||||
```python
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
# Delete Entity: Deleting entities by their names
|
||||
rag.delete_by_entity("Project Gutenberg")
|
||||
|
||||
|
@@ -10,7 +10,7 @@ import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
||||
from lightrag.storage import JsonKVStorage
|
||||
from lightrag.kg.json_kv_impl import JsonKVStorage
|
||||
from lightrag.namespace import NameSpace
|
||||
|
||||
load_dotenv()
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from contextlib import asynccontextmanager
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -8,12 +9,12 @@ from typing import Optional
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
import aiofiles
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
|
||||
DEFAULT_INPUT_FILE = "book.txt"
|
||||
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
||||
@@ -28,6 +29,7 @@ if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def init():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
@@ -44,7 +46,24 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
# Add initialization code
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
global rag
|
||||
rag = await init()
|
||||
print("done!")
|
||||
yield
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
||||
)
|
||||
# Data models
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from contextlib import asynccontextmanager
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -8,6 +9,7 @@ import numpy as np
|
||||
from typing import Optional
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
@@ -71,16 +73,35 @@ async def get_embedding_dim():
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
async def init():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
global rag
|
||||
rag = await init()
|
||||
print("done!")
|
||||
yield
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
||||
)
|
||||
|
||||
# Data models
|
||||
|
||||
|
@@ -1,101 +0,0 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
|
||||
print(f"BASE_URL: {BASE_URL}")
|
||||
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
|
||||
print(f"API_KEY: {API_KEY}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
model=LLM_MODEL,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
# Embedding function
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
texts=texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"{embedding_dim=}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
@@ -16,6 +16,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
|
||||
print(os.getcwd())
|
||||
@@ -113,6 +114,9 @@ async def init():
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from dotenv import load_dotenv
|
||||
import logging
|
||||
from openai import AzureOpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@@ -90,6 +91,9 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
rag.initialize_storages()
|
||||
initialize_pipeline_status()
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
||||
|
@@ -8,6 +8,12 @@ import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||
|
||||
@@ -15,6 +21,7 @@ WORKING_DIR = "./dickens"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=bedrock_complete,
|
||||
@@ -24,6 +31,14 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
|
@@ -8,6 +8,12 @@ from dotenv import load_dotenv
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
load_dotenv()
|
||||
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||||
@@ -60,6 +66,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return embeddings
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -70,6 +77,14 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
file_path = "story.txt"
|
||||
with open(file_path, "r") as file:
|
||||
text = file.read()
|
||||
@@ -82,3 +97,6 @@ response = rag.query(
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -4,12 +4,19 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.hf import hf_model_complete, hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=hf_model_complete,
|
||||
@@ -29,6 +36,13 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
@@ -52,3 +66,6 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,115 +0,0 @@
|
||||
import numpy as np
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm.jina import jina_embed
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await jina_embed(texts, api_key="YourJinaAPIKey")
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"solar-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
async def lightraginsert(file_path, semaphore):
|
||||
async with semaphore:
|
||||
try:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
except UnicodeDecodeError:
|
||||
# If UTF-8 decoding fails, try other encodings
|
||||
with open(file_path, "r", encoding="gbk") as f:
|
||||
content = f.read()
|
||||
await rag.ainsert(content)
|
||||
|
||||
|
||||
async def process_files(directory, concurrency_limit):
|
||||
semaphore = asyncio.Semaphore(concurrency_limit)
|
||||
tasks = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for f in files:
|
||||
file_path = os.path.join(root, f)
|
||||
if f.startswith("."):
|
||||
continue
|
||||
tasks.append(lightraginsert(file_path, semaphore))
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
asyncio.run(process_files(WORKING_DIR, concurrency_limit=4))
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global"),
|
||||
)
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid"),
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
@@ -8,6 +8,11 @@ from lightrag.utils import EmbeddingFunc
|
||||
from llama_index.llms.openai import OpenAI
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = "./index_default"
|
||||
@@ -76,17 +81,29 @@ async def get_embedding_dim():
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
@@ -111,3 +128,6 @@ print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -8,6 +8,11 @@ from lightrag.utils import EmbeddingFunc
|
||||
from llama_index.llms.litellm import LiteLLM
|
||||
from llama_index.embeddings.litellm import LiteLLMEmbedding
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = "./index_default"
|
||||
@@ -79,17 +84,29 @@ async def get_embedding_dim():
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
@@ -114,3 +131,6 @@ print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -5,6 +5,12 @@ from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
|
||||
from lightrag.llm.hf import hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -35,7 +41,7 @@ async def lmdeploy_model_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=lmdeploy_model_complete,
|
||||
@@ -55,26 +61,39 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,5 +1,9 @@
|
||||
import os
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import (
|
||||
openai_complete_if_cache,
|
||||
@@ -7,10 +11,12 @@ from lightrag.llm import (
|
||||
)
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# for custom llm_model_func
|
||||
from lightrag.utils import locate_json_string_body_from_string
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
@@ -91,9 +97,7 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
@@ -111,22 +115,19 @@ async def main():
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# reading file
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
# redefine rag to change embedding into query type
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
# llm_model_name="meta/llama3-70b-instruct", #un comment if
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=query_embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
# Perform naive search
|
||||
print("==============Naive===============")
|
||||
print(
|
||||
|
@@ -1,4 +1,8 @@
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
@@ -6,6 +10,7 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens_age"
|
||||
|
||||
@@ -22,6 +27,7 @@ os.environ["AGE_POSTGRES_HOST"] = "localhost"
|
||||
os.environ["AGE_POSTGRES_PORT"] = "5455"
|
||||
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
@@ -39,25 +45,40 @@ rag = LightRAG(
|
||||
graph_storage="AGEStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
@@ -68,13 +89,10 @@ resp = rag.query(
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,10 +1,14 @@
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
import os
|
||||
import inspect
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -13,6 +17,7 @@ logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
@@ -29,25 +34,40 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
@@ -58,13 +78,10 @@ resp = rag.query(
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -12,6 +12,7 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens_gremlin"
|
||||
|
||||
@@ -31,6 +32,7 @@ os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g"
|
||||
os.environ["GREMLIN_USER"] = ""
|
||||
os.environ["GREMLIN_PASSWORD"] = ""
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
@@ -48,25 +50,40 @@ rag = LightRAG(
|
||||
graph_storage="GremlinStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
@@ -77,13 +94,10 @@ resp = rag.query(
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -2,6 +2,11 @@ import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -27,7 +32,7 @@ os.environ["MILVUS_USER"] = "root"
|
||||
os.environ["MILVUS_PASSWORD"] = "root"
|
||||
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
@@ -47,10 +52,39 @@ rag = LightRAG(
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
)
|
||||
|
||||
file = "./book.txt"
|
||||
with open(file, "r") as f:
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -52,9 +53,7 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
@@ -68,6 +67,15 @@ async def main():
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -52,9 +53,7 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
@@ -72,6 +71,16 @@ async def main():
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
|
@@ -1,9 +1,11 @@
|
||||
import inspect
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import openai_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc, always_get_an_event_loop
|
||||
from lightrag import QueryParam
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -13,6 +15,7 @@ if not os.path.exists(WORKING_DIR):
|
||||
print(f"WorkingDir: {WORKING_DIR}")
|
||||
|
||||
api_key = "empty"
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=openai_complete,
|
||||
@@ -32,6 +35,20 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
if chunk:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
@@ -40,15 +57,12 @@ resp = rag.query(
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
|
||||
async def print_stream(stream):
|
||||
async for chunk in stream:
|
||||
if chunk:
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
|
||||
loop = always_get_an_event_loop()
|
||||
if inspect.isasyncgen(resp):
|
||||
loop.run_until_complete(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
@@ -1,13 +1,15 @@
|
||||
import os
|
||||
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=openai_embed,
|
||||
@@ -15,6 +17,14 @@ rag = LightRAG(
|
||||
# llm_model_func=gpt_4o_complete
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
@@ -38,3 +48,7 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -52,7 +53,7 @@ async def create_embedding_function_instance():
|
||||
async def initialize_rag():
|
||||
embedding_func_instance = await create_embedding_function_instance()
|
||||
|
||||
return LightRAG(
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
@@ -60,14 +61,38 @@ async def initialize_rag():
|
||||
log_level="DEBUG",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
# Run the initialization
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("book.txt", "r", encoding="utf-8") as f:
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -1,7 +1,9 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@@ -48,7 +50,7 @@ embedding_func = EmbeddingFunc(
|
||||
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
|
||||
),
|
||||
)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -62,9 +64,38 @@ rag = LightRAG(
|
||||
doc_status_storage="RedisKVStorage",
|
||||
)
|
||||
|
||||
file = "../book.txt"
|
||||
with open(file, "r", encoding="utf-8") as f:
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
print(rag.query("谁会3D建模 ?", param=QueryParam(mode="mix")))
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -6,6 +6,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
print(os.getcwd())
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
@@ -63,9 +64,7 @@ async def get_embedding_dim():
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
async def initialize_rag():
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
@@ -98,6 +97,15 @@ async def main():
|
||||
"insert_batch_size": 2,
|
||||
},
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -5,6 +5,7 @@ from lightrag.llm.openai import openai_complete_if_cache
|
||||
from lightrag.llm.siliconcloud import siliconcloud_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -46,7 +47,7 @@ async def test_funcs():
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -55,8 +56,17 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
with open("./book.txt") as f:
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
@@ -78,3 +88,7 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -54,9 +55,7 @@ async def get_embedding_dim():
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
async def initialize_rag():
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
@@ -78,9 +77,18 @@ async def main():
|
||||
graph_storage="TiDBGraphStorage",
|
||||
)
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform search in different modes
|
||||
modes = ["naive", "local", "global", "hybrid"]
|
||||
|
@@ -1,10 +1,12 @@
|
||||
import os
|
||||
import logging
|
||||
import asyncio
|
||||
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -17,7 +19,7 @@ api_key = os.environ.get("ZHIPUAI_API_KEY")
|
||||
if api_key is None:
|
||||
raise Exception("Please set ZHIPU_API_KEY in your environment")
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
@@ -31,6 +33,15 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
@@ -53,3 +64,6 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -8,6 +8,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.zhipu import zhipu_complete
|
||||
from lightrag.llm.ollama import ollama_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
load_dotenv()
|
||||
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||||
@@ -27,8 +28,7 @@ os.environ["POSTGRES_USER"] = "rag"
|
||||
os.environ["POSTGRES_PASSWORD"] = "rag"
|
||||
os.environ["POSTGRES_DATABASE"] = "rag"
|
||||
|
||||
|
||||
async def main():
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
@@ -50,9 +50,17 @@ async def main():
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
async def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
await rag.initialize_storages()
|
||||
|
||||
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -6,6 +6,7 @@ import numpy as np
|
||||
from dotenv import load_dotenv
|
||||
import logging
|
||||
from openai import AzureOpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@@ -79,7 +80,7 @@ async def test_funcs():
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
embedding_dimension = 3072
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -90,14 +91,21 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
rag.insert([book1.read(), book2.read()])
|
||||
return rag
|
||||
|
||||
|
||||
# Example function demonstrating the new query_with_separate_keyword_extraction usage
|
||||
async def run_example():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
||||
rag.insert([book1.read(), book2.read()])
|
||||
query = "What are the top themes in this story?"
|
||||
prompt = "Please simplify the response for a young audience."
|
||||
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
@@ -12,13 +13,24 @@ WORKING_DIR = "./dickens"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
@@ -40,3 +52,6 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -4,6 +4,7 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -67,7 +68,7 @@ async def create_embedding_function_instance():
|
||||
async def initialize_rag():
|
||||
embedding_func_instance = await create_embedding_function_instance()
|
||||
if CHROMADB_USE_LOCAL_PERSISTENT:
|
||||
return LightRAG(
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
@@ -87,7 +88,7 @@ async def initialize_rag():
|
||||
},
|
||||
)
|
||||
else:
|
||||
return LightRAG(
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
@@ -112,11 +113,16 @@ async def initialize_rag():
|
||||
)
|
||||
|
||||
|
||||
# Run the initialization
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# rag.insert(f.read())
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
@@ -137,3 +143,6 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import logging
|
||||
import asyncio
|
||||
import numpy as np
|
||||
|
||||
from dotenv import load_dotenv
|
||||
@@ -8,7 +9,9 @@ from sentence_transformers import SentenceTransformer
|
||||
from openai import AzureOpenAI
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
# Configure Logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
@@ -55,11 +58,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
return embeddings
|
||||
|
||||
|
||||
def main():
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
# Initialize LightRAG with the LLM model function and embedding function
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -74,6 +73,15 @@ def main():
|
||||
},
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
# Insert the custom chunks into LightRAG
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -14,6 +15,7 @@ WORKING_DIR = "./local_neo4jWorkDir"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
@@ -22,7 +24,16 @@ rag = LightRAG(
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
@@ -44,3 +55,6 @@ print(
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -18,6 +18,7 @@
|
||||
"from lightrag import LightRAG, QueryParam\n",
|
||||
"from lightrag.llm.openai import openai_complete_if_cache, openai_embed\n",
|
||||
"from lightrag.utils import EmbeddingFunc\n",
|
||||
"from lightrag.kg.shared_storage import initialize_pipeline_status\n",
|
||||
"import nest_asyncio"
|
||||
]
|
||||
},
|
||||
@@ -25,7 +26,9 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "dd17956ec322b361",
|
||||
"metadata": {},
|
||||
"source": "#### split by character"
|
||||
"source": [
|
||||
"#### split by character"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
@@ -109,6 +112,12 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import asyncio\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()\n",
|
||||
"\n",
|
||||
"async def initialize_rag():\n",
|
||||
" rag = LightRAG(\n",
|
||||
" working_dir=WORKING_DIR,\n",
|
||||
" llm_model_func=llm_model_func,\n",
|
||||
@@ -116,7 +125,13 @@
|
||||
" embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
|
||||
" ),\n",
|
||||
" chunk_token_size=512,\n",
|
||||
")"
|
||||
" )\n",
|
||||
" await rag.initialize_storages()\n",
|
||||
" await initialize_pipeline_status()\n",
|
||||
"\n",
|
||||
" return rag\n",
|
||||
"\n",
|
||||
"rag = asyncio.run(initialize_rag())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -908,7 +923,9 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "4e5bfad24cb721a8",
|
||||
"metadata": {},
|
||||
"source": "#### split by character only"
|
||||
"source": [
|
||||
"#### split by character only"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
|
@@ -1,8 +1,10 @@
|
||||
import os
|
||||
import time
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Working directory and the directory path for text files
|
||||
WORKING_DIR = "./dickens"
|
||||
@@ -12,6 +14,7 @@ TEXT_FILES_DIR = "/llm/mt"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
# Initialize LightRAG
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
@@ -23,6 +26,10 @@ rag = LightRAG(
|
||||
func=lambda texts: ollama_embed(texts, embed_model="nomic-embed-text"),
|
||||
),
|
||||
)
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
# Read all .txt files from the TEXT_FILES_DIR directory
|
||||
texts = []
|
||||
@@ -47,6 +54,10 @@ def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||||
raise RuntimeError("Failed to insert texts after multiple retries.")
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
insert_texts_with_retry(rag, texts)
|
||||
|
||||
# Perform different types of queries and handle potential errors
|
||||
@@ -102,3 +113,6 @@ while True:
|
||||
clear_vram()
|
||||
start_time = current_time
|
||||
time.sleep(60) # Check the time every minute
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,8 +1,10 @@
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import asyncio
|
||||
|
||||
from lightrag import LightRAG
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
|
||||
def insert_text(rag, file_path):
|
||||
@@ -29,6 +31,19 @@ WORKING_DIR = f"../{cls}"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,11 +1,13 @@
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import asyncio
|
||||
import numpy as np
|
||||
|
||||
from lightrag import LightRAG
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
|
||||
## For Upstage API
|
||||
@@ -60,6 +62,7 @@ WORKING_DIR = f"../{cls}"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -68,4 +71,16 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -1,203 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
"""
|
||||
Start LightRAG server with Gunicorn
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import signal
|
||||
import pipmaster as pm
|
||||
from lightrag.api.utils_api import parse_args, display_splash_screen
|
||||
from lightrag.kg.shared_storage import initialize_share_data, finalize_share_data
|
||||
|
||||
|
||||
def check_and_install_dependencies():
|
||||
"""Check and install required dependencies"""
|
||||
required_packages = [
|
||||
"gunicorn",
|
||||
"tiktoken",
|
||||
"psutil",
|
||||
# Add other required packages here
|
||||
]
|
||||
|
||||
for package in required_packages:
|
||||
if not pm.is_installed(package):
|
||||
print(f"Installing {package}...")
|
||||
pm.install(package)
|
||||
print(f"{package} installed successfully")
|
||||
|
||||
|
||||
# Signal handler for graceful shutdown
|
||||
def signal_handler(sig, frame):
|
||||
print("\n\n" + "=" * 80)
|
||||
print("RECEIVED TERMINATION SIGNAL")
|
||||
print(f"Process ID: {os.getpid()}")
|
||||
print("=" * 80 + "\n")
|
||||
|
||||
# Release shared resources
|
||||
finalize_share_data()
|
||||
|
||||
# Exit with success status
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
def main():
|
||||
# Check and install dependencies
|
||||
check_and_install_dependencies()
|
||||
|
||||
# Register signal handlers for graceful shutdown
|
||||
signal.signal(signal.SIGINT, signal_handler) # Ctrl+C
|
||||
signal.signal(signal.SIGTERM, signal_handler) # kill command
|
||||
|
||||
# Parse all arguments using parse_args
|
||||
args = parse_args(is_uvicorn_mode=False)
|
||||
|
||||
# Display startup information
|
||||
display_splash_screen(args)
|
||||
|
||||
print("🚀 Starting LightRAG with Gunicorn")
|
||||
print(f"🔄 Worker management: Gunicorn (workers={args.workers})")
|
||||
print("🔍 Preloading app: Enabled")
|
||||
print("📝 Note: Using Gunicorn's preload feature for shared data initialization")
|
||||
print("\n\n" + "=" * 80)
|
||||
print("MAIN PROCESS INITIALIZATION")
|
||||
print(f"Process ID: {os.getpid()}")
|
||||
print(f"Workers setting: {args.workers}")
|
||||
print("=" * 80 + "\n")
|
||||
|
||||
# Import Gunicorn's StandaloneApplication
|
||||
from gunicorn.app.base import BaseApplication
|
||||
|
||||
# Define a custom application class that loads our config
|
||||
class GunicornApp(BaseApplication):
|
||||
def __init__(self, app, options=None):
|
||||
self.options = options or {}
|
||||
self.application = app
|
||||
super().__init__()
|
||||
|
||||
def load_config(self):
|
||||
# Define valid Gunicorn configuration options
|
||||
valid_options = {
|
||||
"bind",
|
||||
"workers",
|
||||
"worker_class",
|
||||
"timeout",
|
||||
"keepalive",
|
||||
"preload_app",
|
||||
"errorlog",
|
||||
"accesslog",
|
||||
"loglevel",
|
||||
"certfile",
|
||||
"keyfile",
|
||||
"limit_request_line",
|
||||
"limit_request_fields",
|
||||
"limit_request_field_size",
|
||||
"graceful_timeout",
|
||||
"max_requests",
|
||||
"max_requests_jitter",
|
||||
}
|
||||
|
||||
# Special hooks that need to be set separately
|
||||
special_hooks = {
|
||||
"on_starting",
|
||||
"on_reload",
|
||||
"on_exit",
|
||||
"pre_fork",
|
||||
"post_fork",
|
||||
"pre_exec",
|
||||
"pre_request",
|
||||
"post_request",
|
||||
"worker_init",
|
||||
"worker_exit",
|
||||
"nworkers_changed",
|
||||
"child_exit",
|
||||
}
|
||||
|
||||
# Import and configure the gunicorn_config module
|
||||
import gunicorn_config
|
||||
|
||||
# Set configuration variables in gunicorn_config, prioritizing command line arguments
|
||||
gunicorn_config.workers = (
|
||||
args.workers if args.workers else int(os.getenv("WORKERS", 1))
|
||||
)
|
||||
|
||||
# Bind configuration prioritizes command line arguments
|
||||
host = args.host if args.host != "0.0.0.0" else os.getenv("HOST", "0.0.0.0")
|
||||
port = args.port if args.port != 9621 else int(os.getenv("PORT", 9621))
|
||||
gunicorn_config.bind = f"{host}:{port}"
|
||||
|
||||
# Log level configuration prioritizes command line arguments
|
||||
gunicorn_config.loglevel = (
|
||||
args.log_level.lower()
|
||||
if args.log_level
|
||||
else os.getenv("LOG_LEVEL", "info")
|
||||
)
|
||||
|
||||
# Timeout configuration prioritizes command line arguments
|
||||
gunicorn_config.timeout = (
|
||||
args.timeout if args.timeout else int(os.getenv("TIMEOUT", 150))
|
||||
)
|
||||
|
||||
# Keepalive configuration
|
||||
gunicorn_config.keepalive = int(os.getenv("KEEPALIVE", 5))
|
||||
|
||||
# SSL configuration prioritizes command line arguments
|
||||
if args.ssl or os.getenv("SSL", "").lower() in (
|
||||
"true",
|
||||
"1",
|
||||
"yes",
|
||||
"t",
|
||||
"on",
|
||||
):
|
||||
gunicorn_config.certfile = (
|
||||
args.ssl_certfile
|
||||
if args.ssl_certfile
|
||||
else os.getenv("SSL_CERTFILE")
|
||||
)
|
||||
gunicorn_config.keyfile = (
|
||||
args.ssl_keyfile if args.ssl_keyfile else os.getenv("SSL_KEYFILE")
|
||||
)
|
||||
|
||||
# Set configuration options from the module
|
||||
for key in dir(gunicorn_config):
|
||||
if key in valid_options:
|
||||
value = getattr(gunicorn_config, key)
|
||||
# Skip functions like on_starting and None values
|
||||
if not callable(value) and value is not None:
|
||||
self.cfg.set(key, value)
|
||||
# Set special hooks
|
||||
elif key in special_hooks:
|
||||
value = getattr(gunicorn_config, key)
|
||||
if callable(value):
|
||||
self.cfg.set(key, value)
|
||||
|
||||
if hasattr(gunicorn_config, "logconfig_dict"):
|
||||
self.cfg.set(
|
||||
"logconfig_dict", getattr(gunicorn_config, "logconfig_dict")
|
||||
)
|
||||
|
||||
def load(self):
|
||||
# Import the application
|
||||
from lightrag.api.lightrag_server import get_application
|
||||
|
||||
return get_application(args)
|
||||
|
||||
# Create the application
|
||||
app = GunicornApp("")
|
||||
|
||||
# Force workers to be an integer and greater than 1 for multi-process mode
|
||||
workers_count = int(args.workers)
|
||||
if workers_count > 1:
|
||||
# Set a flag to indicate we're in the main process
|
||||
os.environ["LIGHTRAG_MAIN_PROCESS"] = "1"
|
||||
initialize_share_data(workers_count)
|
||||
else:
|
||||
initialize_share_data(1)
|
||||
|
||||
# Run the application
|
||||
print("\nStarting Gunicorn with direct Python API...")
|
||||
app.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user