From 990b684a8564acd7e3b841bc8cc1587fc9d251fc Mon Sep 17 00:00:00 2001
From: zrguo
Date: Mon, 6 Jan 2025 15:27:31 +0800
Subject: [PATCH 01/21] Update lightrag.py
---
lightrag/lightrag.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 05de8d9f..cbe49da2 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -177,7 +177,7 @@ class LightRAG:
enable_llm_cache: bool = True
# Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
- enable_llm_cache_for_entity_extract: bool = False
+ enable_llm_cache_for_entity_extract: bool = True
# extension
addon_params: dict = field(default_factory=dict)
From c88bb4fd536273d00dd34d2c30ff938fc6e52340 Mon Sep 17 00:00:00 2001
From: zrguo <49157727+LarFii@users.noreply.github.com>
Date: Mon, 6 Jan 2025 15:34:50 +0800
Subject: [PATCH 02/21] Update LICENSE
---
LICENSE | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/LICENSE b/LICENSE
index c65e8258..3152fbcd 100644
--- a/LICENSE
+++ b/LICENSE
@@ -1,6 +1,6 @@
MIT License
-Copyright (c) 2025 Gustavo Ye
+Copyright (c) 2025 LarFii
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
From e2a4819af9f08f835c13632e783d19be0be34aac Mon Sep 17 00:00:00 2001
From: zrguo <49157727+LarFii@users.noreply.github.com>
Date: Mon, 6 Jan 2025 15:37:37 +0800
Subject: [PATCH 03/21] Update README.md
---
README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/README.md b/README.md
index ed2a7789..4a7e7a28 100644
--- a/README.md
+++ b/README.md
@@ -632,7 +632,7 @@ if __name__ == "__main__":
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database (currently not used) | |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
-| **enable\_llm\_cache\_for\_entity\_extract** | `bool` | If `TRUE`, stores LLM results in cache for entity extraction; Good for beginners to debug your application | `FALSE` |
+| **enable\_llm\_cache\_for\_entity\_extract** | `bool` | If `TRUE`, stores LLM results in cache for entity extraction; Good for beginners to debug your application | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:
- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.
- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.
- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
From 916380e5111f783436cdec22849a07533168c653 Mon Sep 17 00:00:00 2001
From: zrguo <49157727+LarFii@users.noreply.github.com>
Date: Mon, 6 Jan 2025 15:39:44 +0800
Subject: [PATCH 04/21] Update README.md
---
README.md | 63 -------------------------------------------------------
1 file changed, 63 deletions(-)
diff --git a/README.md b/README.md
index 4a7e7a28..0b474699 100644
--- a/README.md
+++ b/README.md
@@ -887,69 +887,6 @@ def extract_queries(file_path):
```
-## Code Structure
-
-```python
-.
-├── .github/
-│ ├── workflows/
-│ │ └── linting.yaml
-├── examples/
-│ ├── batch_eval.py
-│ ├── generate_query.py
-│ ├── graph_visual_with_html.py
-│ ├── graph_visual_with_neo4j.py
-│ ├── insert_custom_kg.py
-│ ├── lightrag_api_openai_compatible_demo.py
-│ ├── lightrag_api_oracle_demo..py
-│ ├── lightrag_azure_openai_demo.py
-│ ├── lightrag_bedrock_demo.py
-│ ├── lightrag_hf_demo.py
-│ ├── lightrag_lmdeploy_demo.py
-│ ├── lightrag_nvidia_demo.py
-│ ├── lightrag_ollama_demo.py
-│ ├── lightrag_openai_compatible_demo.py
-│ ├── lightrag_openai_demo.py
-│ ├── lightrag_oracle_demo.py
-│ ├── lightrag_siliconcloud_demo.py
-│ └── vram_management_demo.py
-├── lightrag/
-│ ├── api/
-│ │ ├── lollms_lightrag_server.py
-│ │ ├── ollama_lightrag_server.py
-│ │ ├── openai_lightrag_server.py
-│ │ ├── azure_openai_lightrag_server.py
-│ │ └── requirements.txt
-│ ├── kg/
-│ │ ├── __init__.py
-│ │ ├── oracle_impl.py
-│ │ └── neo4j_impl.py
-│ ├── __init__.py
-│ ├── base.py
-│ ├── lightrag.py
-│ ├── llm.py
-│ ├── operate.py
-│ ├── prompt.py
-│ ├── storage.py
-│ └── utils.py
-├── reproduce/
-│ ├── Step_0.py
-│ ├── Step_1_openai_compatible.py
-│ ├── Step_1.py
-│ ├── Step_2.py
-│ ├── Step_3_openai_compatible.py
-│ └── Step_3.py
-├── .gitignore
-├── .pre-commit-config.yaml
-├── get_all_edges_nx.py
-├── LICENSE
-├── README.md
-├── requirements.txt
-├── setup.py
-├── test_neo4j.py
-└── test.py
-```
-
## Install with API Support
LightRAG provides optional API support through FastAPI servers that add RAG capabilities to existing LLM services. You can install LightRAG with API support in two ways:
From 39a366a3dc3a02c3d42c3d3ca566bb828bbaf2d6 Mon Sep 17 00:00:00 2001
From: zrguo <49157727+LarFii@users.noreply.github.com>
Date: Mon, 6 Jan 2025 15:43:05 +0800
Subject: [PATCH 05/21] Update __init__.py
---
lightrag/__init__.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/lightrag/__init__.py b/lightrag/__init__.py
index cd2ccf04..b8037813 100644
--- a/lightrag/__init__.py
+++ b/lightrag/__init__.py
@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
-__version__ = "1.0.9"
+__version__ = "1.1.0"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"
From 79646fced8612187ec26e013eb34d19c210e4908 Mon Sep 17 00:00:00 2001
From: xYLiuuuuuu
Date: Mon, 6 Jan 2025 16:54:53 +0800
Subject: [PATCH 06/21] Fix:Optimized logic for automatic switching modes when
keywords do not exist
---
lightrag/operate.py | 117 ++++++++++++++++----------------------------
1 file changed, 42 insertions(+), 75 deletions(-)
diff --git a/lightrag/operate.py b/lightrag/operate.py
index f21e41ff..c8e4565c 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -522,15 +522,16 @@ async def kg_query(
logger.warning("low_level_keywords and high_level_keywords is empty")
return PROMPTS["fail_response"]
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
- logger.warning("low_level_keywords is empty")
- return PROMPTS["fail_response"]
- else:
- ll_keywords = ", ".join(ll_keywords)
+ logger.warning("low_level_keywords is empty, switching from %s mode to global mode", query_param.mode)
+ query_param.mode = "global"
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
- logger.warning("high_level_keywords is empty")
- return PROMPTS["fail_response"]
- else:
- hl_keywords = ", ".join(hl_keywords)
+ logger.warning("high_level_keywords is empty, switching from %s mode to local mode", query_param.mode)
+ query_param.mode = "local"
+
+ ll_keywords = ", ".join(ll_keywords) if ll_keywords else ""
+ hl_keywords = ", ".join(hl_keywords) if hl_keywords else ""
+
+ logger.info("Using %s mode for query processing", query_param.mode)
# Build context
keywords = [ll_keywords, hl_keywords]
@@ -596,78 +597,44 @@ async def _build_query_context(
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
- ll_kewwords, hl_keywrds = query[0], query[1]
- if query_param.mode in ["local", "hybrid"]:
- if ll_kewwords == "":
- ll_entities_context, ll_relations_context, ll_text_units_context = (
- "",
- "",
- "",
- )
- warnings.warn(
- "Low Level context is None. Return empty Low entity/relationship/source"
- )
- query_param.mode = "global"
- else:
- (
- ll_entities_context,
- ll_relations_context,
- ll_text_units_context,
- ) = await _get_node_data(
- ll_kewwords,
- knowledge_graph_inst,
- entities_vdb,
- text_chunks_db,
- query_param,
- )
- if query_param.mode in ["global", "hybrid"]:
- if hl_keywrds == "":
- hl_entities_context, hl_relations_context, hl_text_units_context = (
- "",
- "",
- "",
- )
- warnings.warn(
- "High Level context is None. Return empty High entity/relationship/source"
- )
- query_param.mode = "local"
- else:
- (
- hl_entities_context,
- hl_relations_context,
- hl_text_units_context,
- ) = await _get_edge_data(
- hl_keywrds,
- knowledge_graph_inst,
- relationships_vdb,
- text_chunks_db,
- query_param,
- )
- if (
- hl_entities_context == ""
- and hl_relations_context == ""
- and hl_text_units_context == ""
- ):
- logger.warn("No high level context found. Switching to local mode.")
- query_param.mode = "local"
- if query_param.mode == "hybrid":
+ ll_keywords, hl_keywords = query[0], query[1]
+
+ if query_param.mode == "local":
+ entities_context, relations_context, text_units_context = await _get_node_data(
+ ll_keywords,
+ knowledge_graph_inst,
+ entities_vdb,
+ text_chunks_db,
+ query_param,
+ )
+ elif query_param.mode == "global":
+ entities_context, relations_context, text_units_context = await _get_edge_data(
+ hl_keywords,
+ knowledge_graph_inst,
+ relationships_vdb,
+ text_chunks_db,
+ query_param,
+ )
+ else: # hybrid mode
+ ll_entities_context, ll_relations_context, ll_text_units_context = await _get_node_data(
+ ll_keywords,
+ knowledge_graph_inst,
+ entities_vdb,
+ text_chunks_db,
+ query_param,
+ )
+ hl_entities_context, hl_relations_context, hl_text_units_context = await _get_edge_data(
+ hl_keywords,
+ knowledge_graph_inst,
+ relationships_vdb,
+ text_chunks_db,
+ query_param,
+ )
entities_context, relations_context, text_units_context = combine_contexts(
[hl_entities_context, ll_entities_context],
[hl_relations_context, ll_relations_context],
[hl_text_units_context, ll_text_units_context],
)
- elif query_param.mode == "local":
- entities_context, relations_context, text_units_context = (
- ll_entities_context,
- ll_relations_context,
- ll_text_units_context,
- )
- elif query_param.mode == "global":
- entities_context, relations_context, text_units_context = (
- hl_entities_context,
- hl_relations_context,
- hl_text_units_context,
- )
return f"""
-----Entities-----
```csv
From e415f88bd41f09bf93b32283e1ede067d59b659d Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E2=9C=A8Data=20Intelligence=20Lab=40HKU=E2=9C=A8?=
<118165258+HKUDS@users.noreply.github.com>
Date: Mon, 6 Jan 2025 23:20:26 +0800
Subject: [PATCH 07/21] Update README.md
---
README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/README.md b/README.md
index 0b474699..24f569d8 100644
--- a/README.md
+++ b/README.md
@@ -26,7 +26,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
## 🎉 News
-- [x] [2025.01.06]🎯📢You can now [use PostgreSQL for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-postgres-for-storage).
+- [x] [2025.01.06]🎯📢LightRAG Now Supports [PostgreSQL for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-postgres-for-storage).
- [x] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author.
From 22e9f1cd8919b18c528dff9977eee7c6bd9f4fe7 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E2=9C=A8Data=20Intelligence=20Lab=40HKU=E2=9C=A8?=
<118165258+HKUDS@users.noreply.github.com>
Date: Mon, 6 Jan 2025 23:21:02 +0800
Subject: [PATCH 08/21] Update README.md
---
README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/README.md b/README.md
index 24f569d8..f66fb3ce 100644
--- a/README.md
+++ b/README.md
@@ -26,7 +26,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
## 🎉 News
-- [x] [2025.01.06]🎯📢LightRAG Now Supports [PostgreSQL for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-postgres-for-storage).
+- [x] [2025.01.06]🎯📢LightRAG now supports [PostgreSQL for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-postgres-for-storage).
- [x] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author.
From 536d6f2283815fedb2c423010504fb12fc440055 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E7=AB=A5=E7=9F=B3=E6=B8=8A?=
Date: Tue, 7 Jan 2025 00:28:15 +0800
Subject: [PATCH 09/21] =?UTF-8?q?=E6=B7=BB=E5=8A=A0=E5=AD=97=E7=AC=A6?=
=?UTF-8?q?=E5=88=86=E5=89=B2=E5=8A=9F=E8=83=BD=EF=BC=8C=E5=9C=A8=E2=80=9C?=
=?UTF-8?q?insert=E2=80=9D=E5=87=BD=E6=95=B0=E4=B8=AD=E5=A6=82=E6=9E=9C?=
=?UTF-8?q?=E5=A2=9E=E5=8A=A0=E5=8F=82=E6=95=B0split=5Fby=5Fcharacter?=
=?UTF-8?q?=EF=BC=8C=E5=88=99=E4=BC=9A=E6=8C=89=E7=85=A7split=5Fby=5Fchara?=
=?UTF-8?q?cter=E8=BF=9B=E8=A1=8C=E5=AD=97=E7=AC=A6=E5=88=86=E5=89=B2?=
=?UTF-8?q?=EF=BC=8C=E6=AD=A4=E6=97=B6=E5=A6=82=E6=9E=9C=E6=AF=8F=E4=B8=AA?=
=?UTF-8?q?=E5=88=86=E5=89=B2=E5=90=8E=E7=9A=84chunk=E7=9A=84tokens?=
=?UTF-8?q?=E5=A4=A7=E4=BA=8Emax=5Ftoken=5Fsize=EF=BC=8C=E5=88=99=E4=BC=9A?=
=?UTF-8?q?=E7=BB=A7=E7=BB=AD=E6=8C=89token=5Fsize=E5=88=86=E5=89=B2?=
=?UTF-8?q?=EF=BC=88todo=EF=BC=9A=E8=80=83=E8=99=91=E5=AD=97=E7=AC=A6?=
=?UTF-8?q?=E5=88=86=E5=89=B2=E5=90=8E=E8=BF=87=E7=9F=AD=E7=9A=84chunk?=
=?UTF-8?q?=E5=A4=84=E7=90=86=EF=BC=89?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
lightrag/lightrag.py | 41 ++++---
lightrag/operate.py | 276 +++++++++++++++++++++++--------------------
2 files changed, 171 insertions(+), 146 deletions(-)
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index cbe49da2..47d64ac0 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -45,6 +45,7 @@ from .storage import (
from .prompt import GRAPH_FIELD_SEP
+
# future KG integrations
# from .kg.ArangoDB_impl import (
@@ -167,7 +168,7 @@ class LightRAG:
# LLM
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
- llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
+ llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16
llm_model_kwargs: dict = field(default_factory=dict)
@@ -267,7 +268,7 @@ class LightRAG:
self.llm_model_func,
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -313,15 +314,16 @@ class LightRAG:
"JsonDocStatusStorage": JsonDocStatusStorage,
}
- def insert(self, string_or_strings):
+ def insert(self, string_or_strings, split_by_character=None):
loop = always_get_an_event_loop()
- return loop.run_until_complete(self.ainsert(string_or_strings))
+ return loop.run_until_complete(self.ainsert(string_or_strings, split_by_character))
- async def ainsert(self, string_or_strings):
+ async def ainsert(self, string_or_strings, split_by_character):
"""Insert documents with checkpoint support
Args:
string_or_strings: Single document string or list of document strings
+ split_by_character: if split_by_character is not None, split the string by character
"""
if isinstance(string_or_strings, str):
string_or_strings = [string_or_strings]
@@ -355,10 +357,10 @@ class LightRAG:
# Process documents in batches
batch_size = self.addon_params.get("insert_batch_size", 10)
for i in range(0, len(new_docs), batch_size):
- batch_docs = dict(list(new_docs.items())[i : i + batch_size])
+ batch_docs = dict(list(new_docs.items())[i: i + batch_size])
for doc_id, doc in tqdm_async(
- batch_docs.items(), desc=f"Processing batch {i//batch_size + 1}"
+ batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
):
try:
# Update status to processing
@@ -379,6 +381,7 @@ class LightRAG:
}
for dp in chunking_by_token_size(
doc["content"],
+ split_by_character=split_by_character,
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
@@ -545,7 +548,7 @@ class LightRAG:
# Check if nodes exist in the knowledge graph
for need_insert_id in [src_id, tgt_id]:
if not (
- await self.chunk_entity_relation_graph.has_node(need_insert_id)
+ await self.chunk_entity_relation_graph.has_node(need_insert_id)
):
await self.chunk_entity_relation_graph.upsert_node(
need_insert_id,
@@ -594,9 +597,9 @@ class LightRAG:
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
- + dp["src_id"]
- + dp["tgt_id"]
- + dp["description"],
+ + dp["src_id"]
+ + dp["tgt_id"]
+ + dp["description"],
}
for dp in all_relationships_data
}
@@ -621,7 +624,7 @@ class LightRAG:
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -637,7 +640,7 @@ class LightRAG:
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -656,7 +659,7 @@ class LightRAG:
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -897,7 +900,7 @@ class LightRAG:
dp
for dp in self.entities_vdb.client_storage["data"]
if chunk_id
- in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
+ in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if entities_with_chunk:
logger.error(
@@ -909,7 +912,7 @@ class LightRAG:
dp
for dp in self.relationships_vdb.client_storage["data"]
if chunk_id
- in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
+ in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if relations_with_chunk:
logger.error(
@@ -926,7 +929,7 @@ class LightRAG:
return asyncio.run(self.adelete_by_doc_id(doc_id))
async def get_entity_info(
- self, entity_name: str, include_vector_data: bool = False
+ self, entity_name: str, include_vector_data: bool = False
):
"""Get detailed information of an entity
@@ -977,7 +980,7 @@ class LightRAG:
tracemalloc.stop()
async def get_relation_info(
- self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
+ self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
):
"""Get detailed information of a relationship
@@ -1019,7 +1022,7 @@ class LightRAG:
return result
def get_relation_info_sync(
- self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
+ self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
):
"""Synchronous version of getting relationship information
diff --git a/lightrag/operate.py b/lightrag/operate.py
index b2c4d215..e8f0df65 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -34,30 +34,52 @@ import time
def chunking_by_token_size(
- content: str, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o"
+ content: str, split_by_character=None, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o"
):
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
results = []
- for index, start in enumerate(
- range(0, len(tokens), max_token_size - overlap_token_size)
- ):
- chunk_content = decode_tokens_by_tiktoken(
- tokens[start : start + max_token_size], model_name=tiktoken_model
- )
- results.append(
- {
- "tokens": min(max_token_size, len(tokens) - start),
- "content": chunk_content.strip(),
- "chunk_order_index": index,
- }
- )
+ if split_by_character:
+ raw_chunks = content.split(split_by_character)
+ new_chunks = []
+ for chunk in raw_chunks:
+ _tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
+ if len(_tokens) > max_token_size:
+ for start in range(0, len(_tokens), max_token_size - overlap_token_size):
+ chunk_content = decode_tokens_by_tiktoken(
+ _tokens[start: start + max_token_size], model_name=tiktoken_model
+ )
+ new_chunks.append((min(max_token_size, len(_tokens) - start), chunk_content))
+ else:
+ new_chunks.append((len(_tokens), chunk))
+ for index, (_len, chunk) in enumerate(new_chunks):
+ results.append(
+ {
+ "tokens": _len,
+ "content": chunk.strip(),
+ "chunk_order_index": index,
+ }
+ )
+ else:
+ for index, start in enumerate(
+ range(0, len(tokens), max_token_size - overlap_token_size)
+ ):
+ chunk_content = decode_tokens_by_tiktoken(
+ tokens[start: start + max_token_size], model_name=tiktoken_model
+ )
+ results.append(
+ {
+ "tokens": min(max_token_size, len(tokens) - start),
+ "content": chunk_content.strip(),
+ "chunk_order_index": index,
+ }
+ )
return results
async def _handle_entity_relation_summary(
- entity_or_relation_name: str,
- description: str,
- global_config: dict,
+ entity_or_relation_name: str,
+ description: str,
+ global_config: dict,
) -> str:
use_llm_func: callable = global_config["llm_model_func"]
llm_max_tokens = global_config["llm_model_max_token_size"]
@@ -86,8 +108,8 @@ async def _handle_entity_relation_summary(
async def _handle_single_entity_extraction(
- record_attributes: list[str],
- chunk_key: str,
+ record_attributes: list[str],
+ chunk_key: str,
):
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
return None
@@ -107,8 +129,8 @@ async def _handle_single_entity_extraction(
async def _handle_single_relationship_extraction(
- record_attributes: list[str],
- chunk_key: str,
+ record_attributes: list[str],
+ chunk_key: str,
):
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
return None
@@ -134,10 +156,10 @@ async def _handle_single_relationship_extraction(
async def _merge_nodes_then_upsert(
- entity_name: str,
- nodes_data: list[dict],
- knowledge_graph_inst: BaseGraphStorage,
- global_config: dict,
+ entity_name: str,
+ nodes_data: list[dict],
+ knowledge_graph_inst: BaseGraphStorage,
+ global_config: dict,
):
already_entity_types = []
already_source_ids = []
@@ -181,11 +203,11 @@ async def _merge_nodes_then_upsert(
async def _merge_edges_then_upsert(
- src_id: str,
- tgt_id: str,
- edges_data: list[dict],
- knowledge_graph_inst: BaseGraphStorage,
- global_config: dict,
+ src_id: str,
+ tgt_id: str,
+ edges_data: list[dict],
+ knowledge_graph_inst: BaseGraphStorage,
+ global_config: dict,
):
already_weights = []
already_source_ids = []
@@ -248,12 +270,12 @@ async def _merge_edges_then_upsert(
async def extract_entities(
- chunks: dict[str, TextChunkSchema],
- knowledge_graph_inst: BaseGraphStorage,
- entity_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- global_config: dict,
- llm_response_cache: BaseKVStorage = None,
+ chunks: dict[str, TextChunkSchema],
+ knowledge_graph_inst: BaseGraphStorage,
+ entity_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ global_config: dict,
+ llm_response_cache: BaseKVStorage = None,
) -> Union[BaseGraphStorage, None]:
use_llm_func: callable = global_config["llm_model_func"]
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
@@ -305,13 +327,13 @@ async def extract_entities(
already_relations = 0
async def _user_llm_func_with_cache(
- input_text: str, history_messages: list[dict[str, str]] = None
+ input_text: str, history_messages: list[dict[str, str]] = None
) -> str:
if enable_llm_cache_for_entity_extract and llm_response_cache:
need_to_restore = False
if (
- global_config["embedding_cache_config"]
- and global_config["embedding_cache_config"]["enabled"]
+ global_config["embedding_cache_config"]
+ and global_config["embedding_cache_config"]["enabled"]
):
new_config = global_config.copy()
new_config["embedding_cache_config"] = None
@@ -413,7 +435,7 @@ async def extract_entities(
already_relations += len(maybe_edges)
now_ticks = PROMPTS["process_tickers"][
already_processed % len(PROMPTS["process_tickers"])
- ]
+ ]
print(
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
end="",
@@ -423,10 +445,10 @@ async def extract_entities(
results = []
for result in tqdm_async(
- asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
- total=len(ordered_chunks),
- desc="Extracting entities from chunks",
- unit="chunk",
+ asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
+ total=len(ordered_chunks),
+ desc="Extracting entities from chunks",
+ unit="chunk",
):
results.append(await result)
@@ -440,32 +462,32 @@ async def extract_entities(
logger.info("Inserting entities into storage...")
all_entities_data = []
for result in tqdm_async(
- asyncio.as_completed(
- [
- _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
- for k, v in maybe_nodes.items()
- ]
- ),
- total=len(maybe_nodes),
- desc="Inserting entities",
- unit="entity",
+ asyncio.as_completed(
+ [
+ _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
+ for k, v in maybe_nodes.items()
+ ]
+ ),
+ total=len(maybe_nodes),
+ desc="Inserting entities",
+ unit="entity",
):
all_entities_data.append(await result)
logger.info("Inserting relationships into storage...")
all_relationships_data = []
for result in tqdm_async(
- asyncio.as_completed(
- [
- _merge_edges_then_upsert(
- k[0], k[1], v, knowledge_graph_inst, global_config
- )
- for k, v in maybe_edges.items()
- ]
- ),
- total=len(maybe_edges),
- desc="Inserting relationships",
- unit="relationship",
+ asyncio.as_completed(
+ [
+ _merge_edges_then_upsert(
+ k[0], k[1], v, knowledge_graph_inst, global_config
+ )
+ for k, v in maybe_edges.items()
+ ]
+ ),
+ total=len(maybe_edges),
+ desc="Inserting relationships",
+ unit="relationship",
):
all_relationships_data.append(await result)
@@ -496,9 +518,9 @@ async def extract_entities(
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
- + dp["src_id"]
- + dp["tgt_id"]
- + dp["description"],
+ + dp["src_id"]
+ + dp["tgt_id"]
+ + dp["description"],
"metadata": {
"created_at": dp.get("metadata", {}).get("created_at", time.time())
},
@@ -511,14 +533,14 @@ async def extract_entities(
async def kg_query(
- query,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
- global_config: dict,
- hashing_kv: BaseKVStorage = None,
+ query,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
+ global_config: dict,
+ hashing_kv: BaseKVStorage = None,
) -> str:
# Handle cache
use_model_func = global_config["llm_model_func"]
@@ -638,12 +660,12 @@ async def kg_query(
async def _build_query_context(
- query: list,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
+ query: list,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
):
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
@@ -696,9 +718,9 @@ async def _build_query_context(
query_param,
)
if (
- hl_entities_context == ""
- and hl_relations_context == ""
- and hl_text_units_context == ""
+ hl_entities_context == ""
+ and hl_relations_context == ""
+ and hl_text_units_context == ""
):
logger.warn("No high level context found. Switching to local mode.")
query_param.mode = "local"
@@ -737,11 +759,11 @@ async def _build_query_context(
async def _get_node_data(
- query,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
+ query,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
):
# get similar entities
results = await entities_vdb.query(query, top_k=query_param.top_k)
@@ -828,10 +850,10 @@ async def _get_node_data(
async def _find_most_related_text_unit_from_entities(
- node_datas: list[dict],
- query_param: QueryParam,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- knowledge_graph_inst: BaseGraphStorage,
+ node_datas: list[dict],
+ query_param: QueryParam,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ knowledge_graph_inst: BaseGraphStorage,
):
text_units = [
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
@@ -871,8 +893,8 @@ async def _find_most_related_text_unit_from_entities(
if this_edges:
for e in this_edges:
if (
- e[1] in all_one_hop_text_units_lookup
- and c_id in all_one_hop_text_units_lookup[e[1]]
+ e[1] in all_one_hop_text_units_lookup
+ and c_id in all_one_hop_text_units_lookup[e[1]]
):
all_text_units_lookup[c_id]["relation_counts"] += 1
@@ -902,9 +924,9 @@ async def _find_most_related_text_unit_from_entities(
async def _find_most_related_edges_from_entities(
- node_datas: list[dict],
- query_param: QueryParam,
- knowledge_graph_inst: BaseGraphStorage,
+ node_datas: list[dict],
+ query_param: QueryParam,
+ knowledge_graph_inst: BaseGraphStorage,
):
all_related_edges = await asyncio.gather(
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
@@ -942,11 +964,11 @@ async def _find_most_related_edges_from_entities(
async def _get_edge_data(
- keywords,
- knowledge_graph_inst: BaseGraphStorage,
- relationships_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
+ keywords,
+ knowledge_graph_inst: BaseGraphStorage,
+ relationships_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
):
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
@@ -1044,9 +1066,9 @@ async def _get_edge_data(
async def _find_most_related_entities_from_relationships(
- edge_datas: list[dict],
- query_param: QueryParam,
- knowledge_graph_inst: BaseGraphStorage,
+ edge_datas: list[dict],
+ query_param: QueryParam,
+ knowledge_graph_inst: BaseGraphStorage,
):
entity_names = []
seen = set()
@@ -1081,10 +1103,10 @@ async def _find_most_related_entities_from_relationships(
async def _find_related_text_unit_from_relationships(
- edge_datas: list[dict],
- query_param: QueryParam,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- knowledge_graph_inst: BaseGraphStorage,
+ edge_datas: list[dict],
+ query_param: QueryParam,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ knowledge_graph_inst: BaseGraphStorage,
):
text_units = [
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
@@ -1150,12 +1172,12 @@ def combine_contexts(entities, relationships, sources):
async def naive_query(
- query,
- chunks_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
- global_config: dict,
- hashing_kv: BaseKVStorage = None,
+ query,
+ chunks_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
+ global_config: dict,
+ hashing_kv: BaseKVStorage = None,
):
# Handle cache
use_model_func = global_config["llm_model_func"]
@@ -1213,7 +1235,7 @@ async def naive_query(
if len(response) > len(sys_prompt):
response = (
- response[len(sys_prompt) :]
+ response[len(sys_prompt):]
.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
@@ -1241,15 +1263,15 @@ async def naive_query(
async def mix_kg_vector_query(
- query,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- chunks_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
- global_config: dict,
- hashing_kv: BaseKVStorage = None,
+ query,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ chunks_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
+ global_config: dict,
+ hashing_kv: BaseKVStorage = None,
) -> str:
"""
Hybrid retrieval implementation combining knowledge graph and vector search.
@@ -1274,7 +1296,7 @@ async def mix_kg_vector_query(
# Reuse keyword extraction logic from kg_query
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(
- PROMPTS["keywords_extraction_examples"]
+ PROMPTS["keywords_extraction_examples"]
):
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
From 3bbd3ee1b232cf1335617a5f4308651b295061b5 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E7=AB=A5=E7=9F=B3=E6=B8=8A?=
Date: Tue, 7 Jan 2025 13:45:18 +0800
Subject: [PATCH 10/21] =?UTF-8?q?=E5=9C=A8Mac=E7=AB=AFtorch~=3D2.5.1+cu121?=
=?UTF-8?q?=E4=BC=9A=E5=AF=BC=E8=87=B4=E6=9C=AC=E5=9C=B0=E5=AE=89=E8=A3=85?=
=?UTF-8?q?=E6=97=B6=E6=8A=A5=E9=94=99?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
requirements.txt | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/requirements.txt b/requirements.txt
index 79249e7e..dd3c4cf3 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -32,7 +32,8 @@ tenacity~=9.0.0
# LLM packages
tiktoken~=0.8.0
-torch~=2.5.1+cu121
+# torch~=2.5.1+cu121
+torch~=2.5.1
tqdm~=4.67.1
transformers~=4.47.1
xxhash
From 290744d77040799c2c238524ad39cb1355c1182f Mon Sep 17 00:00:00 2001
From: LarFii <834462287@qq.com>
Date: Tue, 7 Jan 2025 16:04:46 +0800
Subject: [PATCH 11/21] fix requirements.txt
---
requirements.txt | 44 ++++++++++++++++++++++----------------------
1 file changed, 22 insertions(+), 22 deletions(-)
diff --git a/requirements.txt b/requirements.txt
index 79249e7e..e81473ea 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,38 +1,38 @@
accelerate
-aioboto3~=13.3.0
-aiofiles~=24.1.0
-aiohttp~=3.11.11
-asyncpg~=0.30.0
+aioboto3
+aiofiles
+aiohttp
+asyncpg
# database packages
graspologic
gremlinpython
hnswlib
nano-vectordb
-neo4j~=5.27.0
-networkx~=3.2.1
+neo4j
+networkx
-numpy~=2.2.0
-ollama~=0.4.4
-openai~=1.58.1
+numpy
+ollama
+openai
oracledb
-psycopg-pool~=3.2.4
-psycopg[binary,pool]~=3.2.3
-pydantic~=2.10.4
+psycopg-pool
+psycopg[binary,pool]
+pydantic
pymilvus
pymongo
pymysql
-python-dotenv~=1.0.1
-pyvis~=0.3.2
-setuptools~=70.0.0
+python-dotenv
+pyvis
+setuptools
# lmdeploy[all]
-sqlalchemy~=2.0.36
-tenacity~=9.0.0
+sqlalchemy
+tenacity
# LLM packages
-tiktoken~=0.8.0
-torch~=2.5.1+cu121
-tqdm~=4.67.1
-transformers~=4.47.1
-xxhash
+tiktoken
+torch
+tqdm
+transformers
+xxhash
\ No newline at end of file
From 9ef4fe667aeb0ac4b303de698fcdef3ae4fb1c20 Mon Sep 17 00:00:00 2001
From: LarFii <834462287@qq.com>
Date: Tue, 7 Jan 2025 16:18:19 +0800
Subject: [PATCH 12/21] rename
---
contributor-readme.MD => contributor-README.md | 0
1 file changed, 0 insertions(+), 0 deletions(-)
rename contributor-readme.MD => contributor-README.md (100%)
diff --git a/contributor-readme.MD b/contributor-README.md
similarity index 100%
rename from contributor-readme.MD
rename to contributor-README.md
From 79d705071027e15a57c54cc64bc07d2dda246498 Mon Sep 17 00:00:00 2001
From: LarFii <834462287@qq.com>
Date: Tue, 7 Jan 2025 16:21:54 +0800
Subject: [PATCH 13/21] fix linting errors
---
requirements.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/requirements.txt b/requirements.txt
index e81473ea..48c25ff8 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -35,4 +35,4 @@ tiktoken
torch
tqdm
transformers
-xxhash
\ No newline at end of file
+xxhash
From 6b19401dc6f0a27597f15990bd86206409feb540 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E7=AB=A5=E7=9F=B3=E6=B8=8A?=
Date: Tue, 7 Jan 2025 16:26:12 +0800
Subject: [PATCH 14/21] chunk split retry
---
lightrag/lightrag.py | 34 +-
lightrag/operate.py | 247 ++++++++-------
test.ipynb | 740 +++++++++++++++++++++++++++++++++++++++++++
3 files changed, 886 insertions(+), 135 deletions(-)
create mode 100644 test.ipynb
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 47d64ac0..7496d736 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -268,7 +268,7 @@ class LightRAG:
self.llm_model_func,
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -316,7 +316,9 @@ class LightRAG:
def insert(self, string_or_strings, split_by_character=None):
loop = always_get_an_event_loop()
- return loop.run_until_complete(self.ainsert(string_or_strings, split_by_character))
+ return loop.run_until_complete(
+ self.ainsert(string_or_strings, split_by_character)
+ )
async def ainsert(self, string_or_strings, split_by_character):
"""Insert documents with checkpoint support
@@ -357,10 +359,10 @@ class LightRAG:
# Process documents in batches
batch_size = self.addon_params.get("insert_batch_size", 10)
for i in range(0, len(new_docs), batch_size):
- batch_docs = dict(list(new_docs.items())[i: i + batch_size])
+ batch_docs = dict(list(new_docs.items())[i : i + batch_size])
for doc_id, doc in tqdm_async(
- batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
+ batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
):
try:
# Update status to processing
@@ -548,7 +550,7 @@ class LightRAG:
# Check if nodes exist in the knowledge graph
for need_insert_id in [src_id, tgt_id]:
if not (
- await self.chunk_entity_relation_graph.has_node(need_insert_id)
+ await self.chunk_entity_relation_graph.has_node(need_insert_id)
):
await self.chunk_entity_relation_graph.upsert_node(
need_insert_id,
@@ -597,9 +599,9 @@ class LightRAG:
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
- + dp["src_id"]
- + dp["tgt_id"]
- + dp["description"],
+ + dp["src_id"]
+ + dp["tgt_id"]
+ + dp["description"],
}
for dp in all_relationships_data
}
@@ -624,7 +626,7 @@ class LightRAG:
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -640,7 +642,7 @@ class LightRAG:
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -659,7 +661,7 @@ class LightRAG:
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
- and hasattr(self.llm_response_cache, "global_config")
+ and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
@@ -900,7 +902,7 @@ class LightRAG:
dp
for dp in self.entities_vdb.client_storage["data"]
if chunk_id
- in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
+ in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if entities_with_chunk:
logger.error(
@@ -912,7 +914,7 @@ class LightRAG:
dp
for dp in self.relationships_vdb.client_storage["data"]
if chunk_id
- in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
+ in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if relations_with_chunk:
logger.error(
@@ -929,7 +931,7 @@ class LightRAG:
return asyncio.run(self.adelete_by_doc_id(doc_id))
async def get_entity_info(
- self, entity_name: str, include_vector_data: bool = False
+ self, entity_name: str, include_vector_data: bool = False
):
"""Get detailed information of an entity
@@ -980,7 +982,7 @@ class LightRAG:
tracemalloc.stop()
async def get_relation_info(
- self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
+ self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
):
"""Get detailed information of a relationship
@@ -1022,7 +1024,7 @@ class LightRAG:
return result
def get_relation_info_sync(
- self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
+ self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
):
"""Synchronous version of getting relationship information
diff --git a/lightrag/operate.py b/lightrag/operate.py
index e8f0df65..1128b41c 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -34,7 +34,11 @@ import time
def chunking_by_token_size(
- content: str, split_by_character=None, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o"
+ content: str,
+ split_by_character=None,
+ overlap_token_size=128,
+ max_token_size=1024,
+ tiktoken_model="gpt-4o",
):
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
results = []
@@ -44,11 +48,16 @@ def chunking_by_token_size(
for chunk in raw_chunks:
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
if len(_tokens) > max_token_size:
- for start in range(0, len(_tokens), max_token_size - overlap_token_size):
+ for start in range(
+ 0, len(_tokens), max_token_size - overlap_token_size
+ ):
chunk_content = decode_tokens_by_tiktoken(
- _tokens[start: start + max_token_size], model_name=tiktoken_model
+ _tokens[start : start + max_token_size],
+ model_name=tiktoken_model,
+ )
+ new_chunks.append(
+ (min(max_token_size, len(_tokens) - start), chunk_content)
)
- new_chunks.append((min(max_token_size, len(_tokens) - start), chunk_content))
else:
new_chunks.append((len(_tokens), chunk))
for index, (_len, chunk) in enumerate(new_chunks):
@@ -61,10 +70,10 @@ def chunking_by_token_size(
)
else:
for index, start in enumerate(
- range(0, len(tokens), max_token_size - overlap_token_size)
+ range(0, len(tokens), max_token_size - overlap_token_size)
):
chunk_content = decode_tokens_by_tiktoken(
- tokens[start: start + max_token_size], model_name=tiktoken_model
+ tokens[start : start + max_token_size], model_name=tiktoken_model
)
results.append(
{
@@ -77,9 +86,9 @@ def chunking_by_token_size(
async def _handle_entity_relation_summary(
- entity_or_relation_name: str,
- description: str,
- global_config: dict,
+ entity_or_relation_name: str,
+ description: str,
+ global_config: dict,
) -> str:
use_llm_func: callable = global_config["llm_model_func"]
llm_max_tokens = global_config["llm_model_max_token_size"]
@@ -108,8 +117,8 @@ async def _handle_entity_relation_summary(
async def _handle_single_entity_extraction(
- record_attributes: list[str],
- chunk_key: str,
+ record_attributes: list[str],
+ chunk_key: str,
):
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
return None
@@ -129,8 +138,8 @@ async def _handle_single_entity_extraction(
async def _handle_single_relationship_extraction(
- record_attributes: list[str],
- chunk_key: str,
+ record_attributes: list[str],
+ chunk_key: str,
):
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
return None
@@ -156,10 +165,10 @@ async def _handle_single_relationship_extraction(
async def _merge_nodes_then_upsert(
- entity_name: str,
- nodes_data: list[dict],
- knowledge_graph_inst: BaseGraphStorage,
- global_config: dict,
+ entity_name: str,
+ nodes_data: list[dict],
+ knowledge_graph_inst: BaseGraphStorage,
+ global_config: dict,
):
already_entity_types = []
already_source_ids = []
@@ -203,11 +212,11 @@ async def _merge_nodes_then_upsert(
async def _merge_edges_then_upsert(
- src_id: str,
- tgt_id: str,
- edges_data: list[dict],
- knowledge_graph_inst: BaseGraphStorage,
- global_config: dict,
+ src_id: str,
+ tgt_id: str,
+ edges_data: list[dict],
+ knowledge_graph_inst: BaseGraphStorage,
+ global_config: dict,
):
already_weights = []
already_source_ids = []
@@ -270,12 +279,12 @@ async def _merge_edges_then_upsert(
async def extract_entities(
- chunks: dict[str, TextChunkSchema],
- knowledge_graph_inst: BaseGraphStorage,
- entity_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- global_config: dict,
- llm_response_cache: BaseKVStorage = None,
+ chunks: dict[str, TextChunkSchema],
+ knowledge_graph_inst: BaseGraphStorage,
+ entity_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ global_config: dict,
+ llm_response_cache: BaseKVStorage = None,
) -> Union[BaseGraphStorage, None]:
use_llm_func: callable = global_config["llm_model_func"]
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
@@ -327,13 +336,13 @@ async def extract_entities(
already_relations = 0
async def _user_llm_func_with_cache(
- input_text: str, history_messages: list[dict[str, str]] = None
+ input_text: str, history_messages: list[dict[str, str]] = None
) -> str:
if enable_llm_cache_for_entity_extract and llm_response_cache:
need_to_restore = False
if (
- global_config["embedding_cache_config"]
- and global_config["embedding_cache_config"]["enabled"]
+ global_config["embedding_cache_config"]
+ and global_config["embedding_cache_config"]["enabled"]
):
new_config = global_config.copy()
new_config["embedding_cache_config"] = None
@@ -435,7 +444,7 @@ async def extract_entities(
already_relations += len(maybe_edges)
now_ticks = PROMPTS["process_tickers"][
already_processed % len(PROMPTS["process_tickers"])
- ]
+ ]
print(
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
end="",
@@ -445,10 +454,10 @@ async def extract_entities(
results = []
for result in tqdm_async(
- asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
- total=len(ordered_chunks),
- desc="Extracting entities from chunks",
- unit="chunk",
+ asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
+ total=len(ordered_chunks),
+ desc="Extracting entities from chunks",
+ unit="chunk",
):
results.append(await result)
@@ -462,32 +471,32 @@ async def extract_entities(
logger.info("Inserting entities into storage...")
all_entities_data = []
for result in tqdm_async(
- asyncio.as_completed(
- [
- _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
- for k, v in maybe_nodes.items()
- ]
- ),
- total=len(maybe_nodes),
- desc="Inserting entities",
- unit="entity",
+ asyncio.as_completed(
+ [
+ _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
+ for k, v in maybe_nodes.items()
+ ]
+ ),
+ total=len(maybe_nodes),
+ desc="Inserting entities",
+ unit="entity",
):
all_entities_data.append(await result)
logger.info("Inserting relationships into storage...")
all_relationships_data = []
for result in tqdm_async(
- asyncio.as_completed(
- [
- _merge_edges_then_upsert(
- k[0], k[1], v, knowledge_graph_inst, global_config
- )
- for k, v in maybe_edges.items()
- ]
- ),
- total=len(maybe_edges),
- desc="Inserting relationships",
- unit="relationship",
+ asyncio.as_completed(
+ [
+ _merge_edges_then_upsert(
+ k[0], k[1], v, knowledge_graph_inst, global_config
+ )
+ for k, v in maybe_edges.items()
+ ]
+ ),
+ total=len(maybe_edges),
+ desc="Inserting relationships",
+ unit="relationship",
):
all_relationships_data.append(await result)
@@ -518,9 +527,9 @@ async def extract_entities(
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
- + dp["src_id"]
- + dp["tgt_id"]
- + dp["description"],
+ + dp["src_id"]
+ + dp["tgt_id"]
+ + dp["description"],
"metadata": {
"created_at": dp.get("metadata", {}).get("created_at", time.time())
},
@@ -533,14 +542,14 @@ async def extract_entities(
async def kg_query(
- query,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
- global_config: dict,
- hashing_kv: BaseKVStorage = None,
+ query,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
+ global_config: dict,
+ hashing_kv: BaseKVStorage = None,
) -> str:
# Handle cache
use_model_func = global_config["llm_model_func"]
@@ -660,12 +669,12 @@ async def kg_query(
async def _build_query_context(
- query: list,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
+ query: list,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
):
# ll_entities_context, ll_relations_context, ll_text_units_context = "", "", ""
# hl_entities_context, hl_relations_context, hl_text_units_context = "", "", ""
@@ -718,9 +727,9 @@ async def _build_query_context(
query_param,
)
if (
- hl_entities_context == ""
- and hl_relations_context == ""
- and hl_text_units_context == ""
+ hl_entities_context == ""
+ and hl_relations_context == ""
+ and hl_text_units_context == ""
):
logger.warn("No high level context found. Switching to local mode.")
query_param.mode = "local"
@@ -759,11 +768,11 @@ async def _build_query_context(
async def _get_node_data(
- query,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
+ query,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
):
# get similar entities
results = await entities_vdb.query(query, top_k=query_param.top_k)
@@ -850,10 +859,10 @@ async def _get_node_data(
async def _find_most_related_text_unit_from_entities(
- node_datas: list[dict],
- query_param: QueryParam,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- knowledge_graph_inst: BaseGraphStorage,
+ node_datas: list[dict],
+ query_param: QueryParam,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ knowledge_graph_inst: BaseGraphStorage,
):
text_units = [
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
@@ -893,8 +902,8 @@ async def _find_most_related_text_unit_from_entities(
if this_edges:
for e in this_edges:
if (
- e[1] in all_one_hop_text_units_lookup
- and c_id in all_one_hop_text_units_lookup[e[1]]
+ e[1] in all_one_hop_text_units_lookup
+ and c_id in all_one_hop_text_units_lookup[e[1]]
):
all_text_units_lookup[c_id]["relation_counts"] += 1
@@ -924,9 +933,9 @@ async def _find_most_related_text_unit_from_entities(
async def _find_most_related_edges_from_entities(
- node_datas: list[dict],
- query_param: QueryParam,
- knowledge_graph_inst: BaseGraphStorage,
+ node_datas: list[dict],
+ query_param: QueryParam,
+ knowledge_graph_inst: BaseGraphStorage,
):
all_related_edges = await asyncio.gather(
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
@@ -964,11 +973,11 @@ async def _find_most_related_edges_from_entities(
async def _get_edge_data(
- keywords,
- knowledge_graph_inst: BaseGraphStorage,
- relationships_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
+ keywords,
+ knowledge_graph_inst: BaseGraphStorage,
+ relationships_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
):
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
@@ -1066,9 +1075,9 @@ async def _get_edge_data(
async def _find_most_related_entities_from_relationships(
- edge_datas: list[dict],
- query_param: QueryParam,
- knowledge_graph_inst: BaseGraphStorage,
+ edge_datas: list[dict],
+ query_param: QueryParam,
+ knowledge_graph_inst: BaseGraphStorage,
):
entity_names = []
seen = set()
@@ -1103,10 +1112,10 @@ async def _find_most_related_entities_from_relationships(
async def _find_related_text_unit_from_relationships(
- edge_datas: list[dict],
- query_param: QueryParam,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- knowledge_graph_inst: BaseGraphStorage,
+ edge_datas: list[dict],
+ query_param: QueryParam,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ knowledge_graph_inst: BaseGraphStorage,
):
text_units = [
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
@@ -1172,12 +1181,12 @@ def combine_contexts(entities, relationships, sources):
async def naive_query(
- query,
- chunks_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
- global_config: dict,
- hashing_kv: BaseKVStorage = None,
+ query,
+ chunks_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
+ global_config: dict,
+ hashing_kv: BaseKVStorage = None,
):
# Handle cache
use_model_func = global_config["llm_model_func"]
@@ -1235,7 +1244,7 @@ async def naive_query(
if len(response) > len(sys_prompt):
response = (
- response[len(sys_prompt):]
+ response[len(sys_prompt) :]
.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
@@ -1263,15 +1272,15 @@ async def naive_query(
async def mix_kg_vector_query(
- query,
- knowledge_graph_inst: BaseGraphStorage,
- entities_vdb: BaseVectorStorage,
- relationships_vdb: BaseVectorStorage,
- chunks_vdb: BaseVectorStorage,
- text_chunks_db: BaseKVStorage[TextChunkSchema],
- query_param: QueryParam,
- global_config: dict,
- hashing_kv: BaseKVStorage = None,
+ query,
+ knowledge_graph_inst: BaseGraphStorage,
+ entities_vdb: BaseVectorStorage,
+ relationships_vdb: BaseVectorStorage,
+ chunks_vdb: BaseVectorStorage,
+ text_chunks_db: BaseKVStorage[TextChunkSchema],
+ query_param: QueryParam,
+ global_config: dict,
+ hashing_kv: BaseKVStorage = None,
) -> str:
"""
Hybrid retrieval implementation combining knowledge graph and vector search.
@@ -1296,7 +1305,7 @@ async def mix_kg_vector_query(
# Reuse keyword extraction logic from kg_query
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(
- PROMPTS["keywords_extraction_examples"]
+ PROMPTS["keywords_extraction_examples"]
):
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
diff --git a/test.ipynb b/test.ipynb
new file mode 100644
index 00000000..2b9253b4
--- /dev/null
+++ b/test.ipynb
@@ -0,0 +1,740 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "4b5690db12e34685",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:38:34.174205Z",
+ "start_time": "2025-01-07T05:38:29.978194Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import logging\n",
+ "import numpy as np\n",
+ "from lightrag import LightRAG, QueryParam\n",
+ "from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
+ "from lightrag.utils import EmbeddingFunc\n",
+ "import nest_asyncio"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "8c8ee7c061bf9159",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:38:37.440083Z",
+ "start_time": "2025-01-07T05:38:37.437666Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "nest_asyncio.apply()\n",
+ "WORKING_DIR = \"../llm_rag/paper_db/R000088_test2\"\n",
+ "logging.basicConfig(format=\"%(levelname)s:%(message)s\", level=logging.INFO)\n",
+ "if not os.path.exists(WORKING_DIR):\n",
+ " os.mkdir(WORKING_DIR)\n",
+ "os.environ[\"doubao_api\"] = \"6b890250-0cf6-4eb1-aa82-9c9d711398a7\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "a5009d16e0851dca",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:38:42.594315Z",
+ "start_time": "2025-01-07T05:38:42.590800Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "async def llm_model_func(\n",
+ " prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs\n",
+ ") -> str:\n",
+ " return await openai_complete_if_cache(\n",
+ " \"ep-20241218114828-2tlww\",\n",
+ " prompt,\n",
+ " system_prompt=system_prompt,\n",
+ " history_messages=history_messages,\n",
+ " api_key=os.getenv(\"doubao_api\"),\n",
+ " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
+ " **kwargs,\n",
+ " )\n",
+ "\n",
+ "\n",
+ "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
+ " return await openai_embedding(\n",
+ " texts,\n",
+ " model=\"ep-20241231173413-pgjmk\",\n",
+ " api_key=os.getenv(\"doubao_api\"),\n",
+ " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "397fcad24ce4d0ed",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:38:44.016901Z",
+ "start_time": "2025-01-07T05:38:44.006291Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:lightrag:Logger initialized for working directory: ../llm_rag/paper_db/R000088_test2\n",
+ "INFO:lightrag:Load KV llm_response_cache with 0 data\n",
+ "INFO:lightrag:Load KV full_docs with 0 data\n",
+ "INFO:lightrag:Load KV text_chunks with 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_entities.json'} 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_relationships.json'} 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_chunks.json'} 0 data\n",
+ "INFO:lightrag:Loaded document status storage with 0 records\n"
+ ]
+ }
+ ],
+ "source": [
+ "rag = LightRAG(\n",
+ " working_dir=WORKING_DIR,\n",
+ " llm_model_func=llm_model_func,\n",
+ " embedding_func=EmbeddingFunc(\n",
+ " embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
+ " ),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "1dc3603677f7484d",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:38:47.509111Z",
+ "start_time": "2025-01-07T05:38:47.501997Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "with open(\n",
+ " \"../llm_rag/example/R000088/auto/R000088_full_txt.md\", \"r\", encoding=\"utf-8\"\n",
+ ") as f:\n",
+ " content = f.read()\n",
+ "\n",
+ "\n",
+ "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
+ " return await openai_embedding(\n",
+ " texts,\n",
+ " model=\"ep-20241231173413-pgjmk\",\n",
+ " api_key=os.getenv(\"doubao_api\"),\n",
+ " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
+ " )\n",
+ "\n",
+ "\n",
+ "async def get_embedding_dim():\n",
+ " test_text = [\"This is a test sentence.\"]\n",
+ " embedding = await embedding_func(test_text)\n",
+ " embedding_dim = embedding.shape[1]\n",
+ " return embedding_dim"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "6844202606acfbe5",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:38:50.666764Z",
+ "start_time": "2025-01-07T05:38:50.247712Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n"
+ ]
+ }
+ ],
+ "source": [
+ "embedding_dimension = await get_embedding_dim()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "d6273839d9681403",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:42:33.085507Z",
+ "start_time": "2025-01-07T05:38:56.789348Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:lightrag:Processing 1 new unique documents\n",
+ "Processing batch 1: 0%| | 0/1 [00:00, ?it/s]INFO:lightrag:Inserting 22 vectors to chunks\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/1 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 100%|██████████| 1/1 [00:03<00:00, 3.85s/batch]\u001b[A\n",
+ "\n",
+ "Extracting entities from chunks: 0%| | 0/22 [00:00, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 1 chunks, 7 entities(duplicated), 6 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 5%|▍ | 1/22 [00:23<08:21, 23.90s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 2 chunks, 12 entities(duplicated), 15 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 9%|▉ | 2/22 [00:26<03:50, 11.51s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 3 chunks, 20 entities(duplicated), 22 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 14%|█▎ | 3/22 [00:34<03:08, 9.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 4 chunks, 30 entities(duplicated), 30 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 18%|█▊ | 4/22 [00:37<02:09, 7.21s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 5 chunks, 39 entities(duplicated), 39 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 23%|██▎ | 5/22 [00:38<01:19, 4.70s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠦ Processed 6 chunks, 39 entities(duplicated), 39 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 27%|██▋ | 6/22 [00:38<00:53, 3.32s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠧ Processed 7 chunks, 47 entities(duplicated), 50 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 32%|███▏ | 7/22 [00:39<00:39, 2.65s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠇ Processed 8 chunks, 56 entities(duplicated), 58 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 36%|███▋ | 8/22 [00:40<00:29, 2.13s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠏ Processed 9 chunks, 63 entities(duplicated), 69 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 41%|████ | 9/22 [00:47<00:43, 3.38s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠋ Processed 10 chunks, 81 entities(duplicated), 81 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 45%|████▌ | 10/22 [00:48<00:32, 2.73s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 11 chunks, 92 entities(duplicated), 89 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 50%|█████ | 11/22 [01:01<01:05, 5.99s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 12 chunks, 107 entities(duplicated), 107 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 55%|█████▍ | 12/22 [01:10<01:09, 6.94s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 13 chunks, 127 entities(duplicated), 126 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 59%|█████▉ | 13/22 [01:16<00:59, 6.59s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 14 chunks, 151 entities(duplicated), 137 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 64%|██████▎ | 14/22 [01:16<00:37, 4.68s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 15 chunks, 161 entities(duplicated), 144 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 68%|██████▊ | 15/22 [01:17<00:23, 3.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠦ Processed 16 chunks, 176 entities(duplicated), 154 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 73%|███████▎ | 16/22 [01:19<00:18, 3.04s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠧ Processed 17 chunks, 189 entities(duplicated), 162 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 77%|███████▋ | 17/22 [01:21<00:13, 2.80s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠇ Processed 18 chunks, 207 entities(duplicated), 186 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 82%|████████▏ | 18/22 [01:38<00:28, 7.06s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠏ Processed 19 chunks, 222 entities(duplicated), 200 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 86%|████████▋ | 19/22 [01:44<00:19, 6.61s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠋ Processed 20 chunks, 310 entities(duplicated), 219 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 91%|█████████ | 20/22 [02:12<00:26, 13.19s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 21 chunks, 345 entities(duplicated), 263 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 95%|█████████▌| 21/22 [02:32<00:15, 15.15s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 22 chunks, 417 entities(duplicated), 285 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 100%|██████████| 22/22 [03:21<00:00, 9.18s/chunk]\u001b[A\n",
+ "INFO:lightrag:Inserting entities into storage...\n",
+ "\n",
+ "Inserting entities: 100%|██████████| 327/327 [00:00<00:00, 13446.31entity/s]\n",
+ "INFO:lightrag:Inserting relationships into storage...\n",
+ "\n",
+ "Inserting relationships: 100%|██████████| 272/272 [00:00<00:00, 16740.29relationship/s]\n",
+ "INFO:lightrag:Inserting 327 vectors to entities\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/11 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 9%|▉ | 1/11 [00:00<00:09, 1.02batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 18%|█▊ | 2/11 [00:02<00:09, 1.07s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 27%|██▋ | 3/11 [00:02<00:06, 1.33batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 36%|███▋ | 4/11 [00:02<00:04, 1.67batch/s]\u001b[A\n",
+ "Generating embeddings: 45%|████▌ | 5/11 [00:03<00:03, 1.93batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 55%|█████▍ | 6/11 [00:03<00:02, 2.15batch/s]\u001b[A\n",
+ "Generating embeddings: 64%|██████▎ | 7/11 [00:03<00:01, 2.33batch/s]\u001b[A\n",
+ "Generating embeddings: 73%|███████▎ | 8/11 [00:04<00:01, 2.46batch/s]\u001b[A\n",
+ "Generating embeddings: 82%|████████▏ | 9/11 [00:04<00:00, 2.55batch/s]\u001b[A\n",
+ "Generating embeddings: 91%|█████████ | 10/11 [00:05<00:00, 2.64batch/s]\u001b[A\n",
+ "Generating embeddings: 100%|██████████| 11/11 [00:05<00:00, 2.04batch/s]\u001b[A\n",
+ "INFO:lightrag:Inserting 272 vectors to relationships\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/9 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 11%|█ | 1/9 [00:01<00:11, 1.39s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 22%|██▏ | 2/9 [00:02<00:07, 1.01s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 33%|███▎ | 3/9 [00:02<00:04, 1.40batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 44%|████▍ | 4/9 [00:02<00:02, 1.74batch/s]\u001b[A\n",
+ "Generating embeddings: 56%|█████▌ | 5/9 [00:03<00:01, 2.01batch/s]\u001b[A\n",
+ "Generating embeddings: 67%|██████▋ | 6/9 [00:03<00:01, 2.23batch/s]\u001b[A\n",
+ "Generating embeddings: 78%|███████▊ | 7/9 [00:03<00:00, 2.39batch/s]\u001b[A\n",
+ "Generating embeddings: 89%|████████▉ | 8/9 [00:04<00:00, 2.52batch/s]\u001b[A\n",
+ "Generating embeddings: 100%|██████████| 9/9 [00:04<00:00, 1.93batch/s]\u001b[A\n",
+ "INFO:lightrag:Writing graph with 331 nodes, 272 edges\n",
+ "Processing batch 1: 100%|██████████| 1/1 [03:36<00:00, 216.27s/it]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# rag.insert(content)\n",
+ "rag.insert(content, split_by_character=\"\\n#\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "c4f9ae517151a01d",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:42:50.044809Z",
+ "start_time": "2025-01-07T05:42:50.041256Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "prompt1 = \"\"\"\n",
+ "你是一名经验丰富的论文分析科学家,你的任务是对一篇英文学术研究论文进行关键信息提取并深入分析。\n",
+ "\n",
+ "请按照以下步骤进行分析:\n",
+ "1. 对于论文的分析对象相关问题:\n",
+ " - 仔细查找论文中的研究队列相关信息,确定分析对象来自哪些研究队列。\n",
+ " - 查看如果来自多个队列,文中是单独分析还是联合分析。\n",
+ " - 找出这些队列的名称。\n",
+ " - 确定这些队列开展的国家有哪些(注意:“澳门”记为“中国澳门”,“香港”记为“中国香港”,“台湾”记为“中国台湾”,其余采用国家回答)。\n",
+ " - 明确队列研究对象的性别分布(“男性”、“女性”或“全体”)。\n",
+ " - 查找队列收集结束时,研究对象年龄分布(平均值/中位值、标准差或范围),若信息缺失则根据年龄推理规则进行推理:当论文只提供了队列开展时对象的年龄,应根据队列结束时间推算最终年龄范围。例如:1989建立队列时年龄为25 - 42岁,随访至2011年结束,则推算年龄范围为47 - 64岁。\n",
+ " - 确定队列研究时间线,即哪一年开始收集信息/建立队列,哪一年结束,若信息缺失则根据队列时间线推理规则进行推理:如论文只提供了建立队列时间为1995,进行了10年的随访,则推算队列结束时间为2005年。\n",
+ " - 找出队列结束时实际参与研究人数是多少。\n",
+ "首先在<分析>标签中,针对每个问题详细分析你的思考过程。然后在<回答>标签中给出所有问题的最终答案。\"\"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "7a6491385b050095",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-07T05:43:24.751628Z",
+ "start_time": "2025-01-07T05:42:50.865679Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:kw_prompt result:\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{\n",
+ " \"high_level_keywords\": [\"英文学术研究论文分析\", \"关键信息提取\", \"深入分析\"],\n",
+ " \"low_level_keywords\": [\"研究队列\", \"队列名称\", \"队列开展国家\", \"性别分布\", \"年龄分布\", \"队列研究时间线\", \"实际参与研究人数\"]\n",
+ "}\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:Local query uses 60 entites, 38 relations, 6 text units\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:Global query uses 72 entites, 60 relations, 4 text units\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "<分析>\n",
+ "- **分析对象来自哪些研究队列及是单独分析还是联合分析**:\n",
+ " 通过查找论文内容,发现文中提到“This is a combined analysis of data from 2 randomized, double-blind, placebo-controlled clinical trials (Norwegian Vitamin [NORVIT] trial15 and Western Norway B Vitamin Intervention Trial [WENBIT]16)”,明确是对两个队列的数据进行联合分析,队列名称分别为“Norwegian Vitamin (NORVIT) trial”和“Western Norway B Vitamin Intervention Trial (WENBIT)”。\n",
+ "- **队列开展的国家**:\n",
+ " 文中多次提及研究在挪威进行,如“combined analyses and extended follow-up of 2 vitamin B intervention trials among patients with ischemic heart disease in Norway”,所以确定研究开展的国家是挪威。\n",
+ "- **队列研究对象的性别分布**:\n",
+ " 从“Mean (SD) age was 62.3 (11.0) years and 23.5% of participants were women”可知,研究对象包含男性和女性,即全体。\n",
+ "- **队列收集结束时研究对象年龄分布**:\n",
+ " 已知“Mean (SD) age was 62.3 (11.0) years”是基线时年龄信息,“Median (interquartile range) duration of extended follow-up through December 31, 2007, was 78 (61 - 90) months”,由于随访的中位时间是78个月(约6.5年),所以可推算队列收集结束时研究对象年龄均值约为62.3 + 6.5 = 68.8岁(标准差仍为11.0年)。\n",
+ "- **队列研究时间线**:\n",
+ " 根据“2 randomized, double-blind, placebo-controlled clinical trials (Norwegian Vitamin [NORVIT] trial15 and Western Norway B Vitamin Intervention Trial [WENBIT]16) conducted between 1998 and 2005, and an observational posttrial follow-up through December 31, 2007”可知,队列开始收集信息时间为1998年,结束时间为2007年12月31日。\n",
+ "- **队列结束时实际参与研究人数**:\n",
+ " 由“A total of 6837 individuals were included in the combined analyses, of whom 6261 (91.6%) participated in posttrial follow-up”可知,队列结束时实际参与研究人数为6261人。\n",
+ "分析>\n",
+ "\n",
+ "<回答>\n",
+ "- 分析对象来自“Norwegian Vitamin (NORVIT) trial”和“Western Norway B Vitamin Intervention Trial (WENBIT)”两个研究队列,文中是对这两个队列的数据进行联合分析。\n",
+ "- 队列开展的国家是挪威。\n",
+ "- 队列研究对象的性别分布为全体。\n",
+ "- 队列收集结束时,研究对象年龄分布均值约为68.8岁,标准差为11.0年。\n",
+ "- 队列研究时间线为1998年开始收集信息/建立队列,2007年12月31日结束。\n",
+ "- 队列结束时实际参与研究人数是6261人。\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(rag.query(prompt1, param=QueryParam(mode=\"hybrid\")))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fef9d06983da47af",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
From 6c78c96854d9ab563a547546dd8652ed59190bd2 Mon Sep 17 00:00:00 2001
From: zrguo
Date: Tue, 7 Jan 2025 22:02:34 +0800
Subject: [PATCH 15/21] fix linting errors
---
lightrag/operate.py | 23 ++++++++++++++++++-----
1 file changed, 18 insertions(+), 5 deletions(-)
diff --git a/lightrag/operate.py b/lightrag/operate.py
index 59e9f648..ce7b0a8a 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -4,7 +4,6 @@ import re
from tqdm.asyncio import tqdm as tqdm_async
from typing import Union
from collections import Counter, defaultdict
-import warnings
from .utils import (
logger,
clean_str,
@@ -605,10 +604,16 @@ async def kg_query(
logger.warning("low_level_keywords and high_level_keywords is empty")
return PROMPTS["fail_response"]
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
- logger.warning("low_level_keywords is empty, switching from %s mode to global mode", query_param.mode)
+ logger.warning(
+ "low_level_keywords is empty, switching from %s mode to global mode",
+ query_param.mode,
+ )
query_param.mode = "global"
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
- logger.warning("high_level_keywords is empty, switching from %s mode to local mode", query_param.mode)
+ logger.warning(
+ "high_level_keywords is empty, switching from %s mode to local mode",
+ query_param.mode,
+ )
query_param.mode = "local"
ll_keywords = ", ".join(ll_keywords) if ll_keywords else ""
@@ -699,14 +704,22 @@ async def _build_query_context(
query_param,
)
else: # hybrid mode
- ll_entities_context, ll_relations_context, ll_text_units_context = await _get_node_data(
+ (
+ ll_entities_context,
+ ll_relations_context,
+ ll_text_units_context,
+ ) = await _get_node_data(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
)
- hl_entities_context, hl_relations_context, hl_text_units_context = await _get_edge_data(
+ (
+ hl_entities_context,
+ hl_relations_context,
+ hl_text_units_context,
+ ) = await _get_edge_data(
hl_keywords,
knowledge_graph_inst,
relationships_vdb,
From a9402513909606c76a2e8d5e040f12ecb8aa4739 Mon Sep 17 00:00:00 2001
From: Gurjot Singh
Date: Tue, 7 Jan 2025 20:57:39 +0530
Subject: [PATCH 16/21] Implement custom chunking feature
---
lightrag/lightrag.py | 66 ++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 66 insertions(+)
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 7496d736..2225b2d1 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -458,6 +458,72 @@ class LightRAG:
# Ensure all indexes are updated after each document
await self._insert_done()
+ def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
+ loop = always_get_an_event_loop()
+ return loop.run_until_complete(self.ainsert_custom_chunks(full_text, text_chunks))
+
+ async def ainsert_custom_chunks(self, full_text: str, text_chunks: list[str]):
+
+ update_storage = False
+ try:
+ doc_key = compute_mdhash_id(full_text.strip(), prefix="doc-")
+ new_docs = {
+ doc_key: {"content": full_text.strip()}
+ }
+
+ _add_doc_keys = await self.full_docs.filter_keys([doc_key])
+ new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
+ if not len(new_docs):
+ logger.warning("This document is already in the storage.")
+ return
+
+ update_storage = True
+ logger.info(f"[New Docs] inserting {len(new_docs)} docs")
+
+ inserting_chunks = {}
+ for chunk_text in text_chunks:
+ chunk_text_stripped = chunk_text.strip()
+ chunk_key = compute_mdhash_id(chunk_text_stripped, prefix="chunk-")
+
+ inserting_chunks[chunk_key] = {
+ "content": chunk_text_stripped,
+ "full_doc_id": doc_key,
+ }
+
+ _add_chunk_keys = await self.text_chunks.filter_keys(list(inserting_chunks.keys()))
+ inserting_chunks = {
+ k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
+ }
+ if not len(inserting_chunks):
+ logger.warning("All chunks are already in the storage.")
+ return
+
+ logger.info(f"[New Chunks] inserting {len(inserting_chunks)} chunks")
+
+ await self.chunks_vdb.upsert(inserting_chunks)
+
+ logger.info("[Entity Extraction]...")
+ maybe_new_kg = await extract_entities(
+ inserting_chunks,
+ knowledge_graph_inst=self.chunk_entity_relation_graph,
+ entity_vdb=self.entities_vdb,
+ relationships_vdb=self.relationships_vdb,
+ global_config=asdict(self),
+ )
+
+ if maybe_new_kg is None:
+ logger.warning("No new entities and relationships found")
+ return
+ else:
+ self.chunk_entity_relation_graph = maybe_new_kg
+
+ await self.full_docs.upsert(new_docs)
+ await self.text_chunks.upsert(inserting_chunks)
+
+ finally:
+ if update_storage:
+ await self._insert_done()
+
async def _insert_done(self):
tasks = []
for storage_inst in [
From 9e7784ab8a642415432c742d8e891f6173886f66 Mon Sep 17 00:00:00 2001
From: zrguo <49157727+LarFii@users.noreply.github.com>
Date: Wed, 8 Jan 2025 18:17:32 +0800
Subject: [PATCH 17/21] Update README.md
---
README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/README.md b/README.md
index f66fb3ce..6c981d92 100644
--- a/README.md
+++ b/README.md
@@ -12,7 +12,7 @@
-
+
From 9565a4663ad8878126f16d667455ca5a22f1d557 Mon Sep 17 00:00:00 2001
From: Gurjot Singh
Date: Thu, 9 Jan 2025 00:39:22 +0530
Subject: [PATCH 18/21] Fix trailing whitespace and formatting issues in
lightrag.py
---
lightrag/lightrag.py | 15 ++++++++-------
1 file changed, 8 insertions(+), 7 deletions(-)
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 2225b2d1..6af29aa2 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -460,16 +460,15 @@ class LightRAG:
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
loop = always_get_an_event_loop()
- return loop.run_until_complete(self.ainsert_custom_chunks(full_text, text_chunks))
+ return loop.run_until_complete(
+ self.ainsert_custom_chunks(full_text, text_chunks)
+ )
async def ainsert_custom_chunks(self, full_text: str, text_chunks: list[str]):
-
update_storage = False
try:
doc_key = compute_mdhash_id(full_text.strip(), prefix="doc-")
- new_docs = {
- doc_key: {"content": full_text.strip()}
- }
+ new_docs = {doc_key: {"content": full_text.strip()}}
_add_doc_keys = await self.full_docs.filter_keys([doc_key])
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
@@ -484,13 +483,15 @@ class LightRAG:
for chunk_text in text_chunks:
chunk_text_stripped = chunk_text.strip()
chunk_key = compute_mdhash_id(chunk_text_stripped, prefix="chunk-")
-
+
inserting_chunks[chunk_key] = {
"content": chunk_text_stripped,
"full_doc_id": doc_key,
}
- _add_chunk_keys = await self.text_chunks.filter_keys(list(inserting_chunks.keys()))
+ _add_chunk_keys = await self.text_chunks.filter_keys(
+ list(inserting_chunks.keys())
+ )
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
From 65c1450c66a769e9134e900a87706f9bc4ab5a97 Mon Sep 17 00:00:00 2001
From: Saifeddine ALOUI
Date: Wed, 8 Jan 2025 20:50:22 +0100
Subject: [PATCH 19/21] fixed retro compatibility with ainsert by making
split_by_character get a None default value
---
lightrag/lightrag.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 7496d736..362b7275 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -320,7 +320,7 @@ class LightRAG:
self.ainsert(string_or_strings, split_by_character)
)
- async def ainsert(self, string_or_strings, split_by_character):
+ async def ainsert(self, string_or_strings, split_by_character=None):
"""Insert documents with checkpoint support
Args:
From dd213c95be5c63bc61f399f14612028fd40a4a33 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?=E7=AB=A5=E7=9F=B3=E6=B8=8A?=
Date: Thu, 9 Jan 2025 11:55:49 +0800
Subject: [PATCH 20/21] =?UTF-8?q?=E5=A2=9E=E5=8A=A0=E4=BB=85=E5=AD=97?=
=?UTF-8?q?=E7=AC=A6=E5=88=86=E5=89=B2=E5=8F=82=E6=95=B0=EF=BC=8C=E5=A6=82?=
=?UTF-8?q?=E6=9E=9C=E5=BC=80=E5=90=AF=EF=BC=8C=E4=BB=85=E9=87=87=E7=94=A8?=
=?UTF-8?q?=E5=AD=97=E7=AC=A6=E5=88=86=E5=89=B2=EF=BC=8C=E4=B8=8D=E5=BC=80?=
=?UTF-8?q?=E5=90=AF=EF=BC=8C=E5=9C=A8=E5=88=86=E5=89=B2=E5=AE=8C=E4=BB=A5?=
=?UTF-8?q?=E5=90=8E=E5=A6=82=E6=9E=9Cchunk=E8=BF=87=E5=A4=A7=EF=BC=8C?=
=?UTF-8?q?=E4=BC=9A=E7=BB=A7=E7=BB=AD=E6=A0=B9=E6=8D=AEtoken=20size?=
=?UTF-8?q?=E5=88=86=E5=89=B2=EF=BC=8C=E6=9B=B4=E6=96=B0=E6=B5=8B=E8=AF=95?=
=?UTF-8?q?=E6=96=87=E4=BB=B6?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
examples/test_split_by_character.ipynb | 1296 ++++++++++++++++++++++++
lightrag/lightrag.py | 16 +-
lightrag/operate.py | 34 +-
test.ipynb | 740 --------------
4 files changed, 1328 insertions(+), 758 deletions(-)
create mode 100644 examples/test_split_by_character.ipynb
delete mode 100644 test.ipynb
diff --git a/examples/test_split_by_character.ipynb b/examples/test_split_by_character.ipynb
new file mode 100644
index 00000000..e8e08b92
--- /dev/null
+++ b/examples/test_split_by_character.ipynb
@@ -0,0 +1,1296 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "4b5690db12e34685",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:40:58.307102Z",
+ "start_time": "2025-01-09T03:40:51.935233Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import logging\n",
+ "import numpy as np\n",
+ "from lightrag import LightRAG, QueryParam\n",
+ "from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
+ "from lightrag.utils import EmbeddingFunc\n",
+ "import nest_asyncio"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dd17956ec322b361",
+ "metadata": {},
+ "source": "#### split by character"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8c8ee7c061bf9159",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:41:13.961167Z",
+ "start_time": "2025-01-09T03:41:13.958357Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "nest_asyncio.apply()\n",
+ "WORKING_DIR = \"../../llm_rag/paper_db/R000088_test1\"\n",
+ "logging.basicConfig(format=\"%(levelname)s:%(message)s\", level=logging.INFO)\n",
+ "if not os.path.exists(WORKING_DIR):\n",
+ " os.mkdir(WORKING_DIR)\n",
+ "API = os.environ.get(\"DOUBAO_API_KEY\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "a5009d16e0851dca",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:41:16.862036Z",
+ "start_time": "2025-01-09T03:41:16.859306Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "async def llm_model_func(\n",
+ " prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs\n",
+ ") -> str:\n",
+ " return await openai_complete_if_cache(\n",
+ " \"ep-20241218114828-2tlww\",\n",
+ " prompt,\n",
+ " system_prompt=system_prompt,\n",
+ " history_messages=history_messages,\n",
+ " api_key=API,\n",
+ " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
+ " **kwargs,\n",
+ " )\n",
+ "\n",
+ "\n",
+ "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
+ " return await openai_embedding(\n",
+ " texts,\n",
+ " model=\"ep-20241231173413-pgjmk\",\n",
+ " api_key=API,\n",
+ " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "397fcad24ce4d0ed",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:41:24.950307Z",
+ "start_time": "2025-01-09T03:41:24.940353Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:lightrag:Logger initialized for working directory: ../../llm_rag/paper_db/R000088_test1\n",
+ "INFO:lightrag:Load KV llm_response_cache with 0 data\n",
+ "INFO:lightrag:Load KV full_docs with 0 data\n",
+ "INFO:lightrag:Load KV text_chunks with 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_entities.json'} 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_relationships.json'} 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_chunks.json'} 0 data\n",
+ "INFO:lightrag:Loaded document status storage with 0 records\n"
+ ]
+ }
+ ],
+ "source": [
+ "rag = LightRAG(\n",
+ " working_dir=WORKING_DIR,\n",
+ " llm_model_func=llm_model_func,\n",
+ " embedding_func=EmbeddingFunc(\n",
+ " embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
+ " ),\n",
+ " chunk_token_size=512,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "1dc3603677f7484d",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:41:37.947456Z",
+ "start_time": "2025-01-09T03:41:37.941901Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "with open(\n",
+ " \"../../llm_rag/example/R000088/auto/R000088_full_txt.md\", \"r\", encoding=\"utf-8\"\n",
+ ") as f:\n",
+ " content = f.read()\n",
+ "\n",
+ "\n",
+ "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
+ " return await openai_embedding(\n",
+ " texts,\n",
+ " model=\"ep-20241231173413-pgjmk\",\n",
+ " api_key=API,\n",
+ " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
+ " )\n",
+ "\n",
+ "\n",
+ "async def get_embedding_dim():\n",
+ " test_text = [\"This is a test sentence.\"]\n",
+ " embedding = await embedding_func(test_text)\n",
+ " embedding_dim = embedding.shape[1]\n",
+ " return embedding_dim"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "6844202606acfbe5",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:41:39.608541Z",
+ "start_time": "2025-01-09T03:41:39.165057Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n"
+ ]
+ }
+ ],
+ "source": [
+ "embedding_dimension = await get_embedding_dim()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "d6273839d9681403",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:44:34.295345Z",
+ "start_time": "2025-01-09T03:41:48.324171Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:lightrag:Processing 1 new unique documents\n",
+ "Processing batch 1: 0%| | 0/1 [00:00, ?it/s]INFO:lightrag:Inserting 35 vectors to chunks\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/2 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 50%|█████ | 1/2 [00:00<00:00, 1.36batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 100%|██████████| 2/2 [00:04<00:00, 2.25s/batch]\u001b[A\n",
+ "\n",
+ "Extracting entities from chunks: 0%| | 0/35 [00:00, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 1 chunks, 1 entities(duplicated), 0 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 3%|▎ | 1/35 [00:04<02:47, 4.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 2 chunks, 2 entities(duplicated), 0 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 6%|▌ | 2/35 [00:05<01:18, 2.37s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 3 chunks, 9 entities(duplicated), 5 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 9%|▊ | 3/35 [00:26<05:43, 10.73s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 4 chunks, 16 entities(duplicated), 11 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 11%|█▏ | 4/35 [00:26<03:24, 6.60s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 5 chunks, 24 entities(duplicated), 18 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 14%|█▍ | 5/35 [00:33<03:24, 6.82s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠦ Processed 6 chunks, 35 entities(duplicated), 28 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 17%|█▋ | 6/35 [00:42<03:38, 7.53s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠧ Processed 7 chunks, 47 entities(duplicated), 36 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 20%|██ | 7/35 [00:43<02:28, 5.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠇ Processed 8 chunks, 61 entities(duplicated), 49 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 23%|██▎ | 8/35 [00:45<01:52, 4.16s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠏ Processed 9 chunks, 81 entities(duplicated), 49 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠋ Processed 10 chunks, 90 entities(duplicated), 62 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 29%|██▊ | 10/35 [00:46<01:06, 2.64s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 11 chunks, 101 entities(duplicated), 80 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 31%|███▏ | 11/35 [00:52<01:19, 3.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 12 chunks, 108 entities(duplicated), 85 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 34%|███▍ | 12/35 [00:54<01:11, 3.12s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 13 chunks, 120 entities(duplicated), 100 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 37%|███▋ | 13/35 [00:59<01:18, 3.55s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 14 chunks, 131 entities(duplicated), 110 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 40%|████ | 14/35 [01:00<00:59, 2.82s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 15 chunks, 143 entities(duplicated), 110 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 43%|████▎ | 15/35 [01:02<00:52, 2.64s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠦ Processed 16 chunks, 162 entities(duplicated), 124 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 46%|████▌ | 16/35 [01:05<00:53, 2.80s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠧ Processed 17 chunks, 174 entities(duplicated), 132 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 49%|████▊ | 17/35 [01:06<00:39, 2.19s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠇ Processed 18 chunks, 185 entities(duplicated), 137 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 51%|█████▏ | 18/35 [01:12<00:53, 3.15s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠏ Processed 19 chunks, 193 entities(duplicated), 149 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 54%|█████▍ | 19/35 [01:18<01:06, 4.14s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠋ Processed 20 chunks, 205 entities(duplicated), 158 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 57%|█████▋ | 20/35 [01:19<00:50, 3.35s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 21 chunks, 220 entities(duplicated), 187 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 60%|██████ | 21/35 [01:27<01:02, 4.47s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 22 chunks, 247 entities(duplicated), 216 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 63%|██████▎ | 22/35 [01:30<00:54, 4.16s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 23 chunks, 260 entities(duplicated), 230 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 66%|██████▌ | 23/35 [01:34<00:48, 4.05s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 24 chunks, 291 entities(duplicated), 253 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 69%|██████▊ | 24/35 [01:38<00:44, 4.03s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 25 chunks, 304 entities(duplicated), 262 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 71%|███████▏ | 25/35 [01:41<00:36, 3.67s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠦ Processed 26 chunks, 313 entities(duplicated), 271 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 74%|███████▍ | 26/35 [01:41<00:24, 2.76s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠧ Processed 27 chunks, 321 entities(duplicated), 283 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 77%|███████▋ | 27/35 [01:47<00:28, 3.52s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠇ Processed 28 chunks, 333 entities(duplicated), 290 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 80%|████████ | 28/35 [01:52<00:28, 4.08s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠏ Processed 29 chunks, 348 entities(duplicated), 307 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 83%|████████▎ | 29/35 [01:59<00:29, 4.88s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠋ Processed 30 chunks, 362 entities(duplicated), 329 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 86%|████████▌ | 30/35 [02:02<00:21, 4.29s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 31 chunks, 373 entities(duplicated), 337 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 89%|████████▊ | 31/35 [02:03<00:13, 3.28s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 32 chunks, 390 entities(duplicated), 369 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 91%|█████████▏| 32/35 [02:03<00:07, 2.55s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 33 chunks, 405 entities(duplicated), 378 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 94%|█████████▍| 33/35 [02:07<00:05, 2.84s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 34 chunks, 435 entities(duplicated), 395 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 97%|█████████▋| 34/35 [02:10<00:02, 2.94s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 35 chunks, 456 entities(duplicated), 440 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 100%|██████████| 35/35 [02:23<00:00, 4.10s/chunk]\u001b[A\n",
+ "INFO:lightrag:Inserting entities into storage...\n",
+ "\n",
+ "Inserting entities: 100%|██████████| 324/324 [00:00<00:00, 17456.96entity/s]\n",
+ "INFO:lightrag:Inserting relationships into storage...\n",
+ "\n",
+ "Inserting relationships: 100%|██████████| 427/427 [00:00<00:00, 29956.31relationship/s]\n",
+ "INFO:lightrag:Inserting 324 vectors to entities\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/11 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 9%|▉ | 1/11 [00:00<00:06, 1.48batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 18%|█▊ | 2/11 [00:02<00:11, 1.25s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 27%|██▋ | 3/11 [00:02<00:06, 1.17batch/s]\u001b[A\n",
+ "Generating embeddings: 36%|███▋ | 4/11 [00:03<00:04, 1.50batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 45%|████▌ | 5/11 [00:03<00:03, 1.78batch/s]\u001b[A\n",
+ "Generating embeddings: 55%|█████▍ | 6/11 [00:03<00:02, 2.01batch/s]\u001b[A\n",
+ "Generating embeddings: 64%|██████▎ | 7/11 [00:04<00:01, 2.19batch/s]\u001b[A\n",
+ "Generating embeddings: 73%|███████▎ | 8/11 [00:04<00:01, 2.31batch/s]\u001b[A\n",
+ "Generating embeddings: 82%|████████▏ | 9/11 [00:04<00:00, 2.41batch/s]\u001b[A\n",
+ "Generating embeddings: 91%|█████████ | 10/11 [00:05<00:00, 2.48batch/s]\u001b[A\n",
+ "Generating embeddings: 100%|██████████| 11/11 [00:05<00:00, 1.91batch/s]\u001b[A\n",
+ "INFO:lightrag:Inserting 427 vectors to relationships\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/14 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 7%|▋ | 1/14 [00:01<00:14, 1.11s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 14%|█▍ | 2/14 [00:02<00:14, 1.18s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 21%|██▏ | 3/14 [00:02<00:08, 1.23batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 29%|██▊ | 4/14 [00:03<00:06, 1.56batch/s]\u001b[A\n",
+ "Generating embeddings: 36%|███▌ | 5/14 [00:03<00:04, 1.85batch/s]\u001b[A\n",
+ "Generating embeddings: 43%|████▎ | 6/14 [00:03<00:03, 2.05batch/s]\u001b[A\n",
+ "Generating embeddings: 50%|█████ | 7/14 [00:04<00:03, 2.23batch/s]\u001b[A\n",
+ "Generating embeddings: 57%|█████▋ | 8/14 [00:04<00:02, 2.37batch/s]\u001b[A\n",
+ "Generating embeddings: 64%|██████▍ | 9/14 [00:04<00:02, 2.46batch/s]\u001b[A\n",
+ "Generating embeddings: 71%|███████▏ | 10/14 [00:05<00:01, 2.54batch/s]\u001b[A\n",
+ "Generating embeddings: 79%|███████▊ | 11/14 [00:05<00:01, 2.59batch/s]\u001b[A\n",
+ "Generating embeddings: 86%|████████▌ | 12/14 [00:06<00:00, 2.64batch/s]\u001b[A\n",
+ "Generating embeddings: 93%|█████████▎| 13/14 [00:06<00:00, 2.65batch/s]\u001b[A\n",
+ "Generating embeddings: 100%|██████████| 14/14 [00:06<00:00, 2.05batch/s]\u001b[A\n",
+ "INFO:lightrag:Writing graph with 333 nodes, 427 edges\n",
+ "Processing batch 1: 100%|██████████| 1/1 [02:45<00:00, 165.90s/it]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# rag.insert(content)\n",
+ "rag.insert(content, split_by_character=\"\\n#\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "c4f9ae517151a01d",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:45:11.668987Z",
+ "start_time": "2025-01-09T03:45:11.664744Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "prompt1 = \"\"\"你是一名经验丰富的论文分析科学家,你的任务是对一篇英文学术研究论文进行关键信息提取并深入分析。\n",
+ "请按照以下步骤进行分析:\n",
+ "1. 该文献主要研究的问题是什么?\n",
+ "2. 该文献采用什么方法进行分析?\n",
+ "3. 该文献的主要结论是什么?\n",
+ "首先在<分析>标签中,针对每个问题详细分析你的思考过程。然后在<回答>标签中给出所有问题的最终答案。\"\"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "7a6491385b050095",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:45:40.829111Z",
+ "start_time": "2025-01-09T03:45:13.530298Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:Local query uses 5 entites, 12 relations, 3 text units\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:Global query uses 8 entites, 5 relations, 4 text units\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "<分析>\n",
+ "1. **该文献主要研究的问题是什么?**\n",
+ " - 思考过程:通过浏览论文内容,查找作者明确阐述研究目的的部分。文中多处提及“Our study was performed to explore whether folic acid treatment was associated with cancer outcomes and all-cause mortality after extended follow-up”,表明作者旨在探究叶酸治疗与癌症结局及全因死亡率之间的关系,尤其是在经过长期随访后。\n",
+ "2. **该文献采用什么方法进行分析?**\n",
+ " - 思考过程:寻找描述研究方法和数据分析过程的段落。文中提到“Survival curves were constructed using the Kaplan-Meier method and differences in survival between groups were analyzed using the log-rank test. Estimates of hazard ratios (HRs) with 95% CIs were obtained by using Cox proportional hazards regression models stratified by trial”,可以看出作者使用了Kaplan-Meier法构建生存曲线、log-rank检验分析组间生存差异以及Cox比例风险回归模型估计风险比等方法。\n",
+ "3. **该文献的主要结论是什么?**\n",
+ " - 思考过程:定位到论文中总结结论的部分,如“Conclusion Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods”,可知作者得出叶酸加维生素$\\mathsf{B}_{12}$治疗与癌症结局和全因死亡率增加有关的结论。\n",
+ "<回答>\n",
+ "1. 该文献主要研究的问题是:叶酸治疗与癌症结局及全因死亡率之间的关系,尤其是在经过长期随访后,叶酸治疗是否与癌症结局和全因死亡率相关。\n",
+ "2. 该文献采用的分析方法包括:使用Kaplan-Meier法构建生存曲线、log-rank检验分析组间生存差异、Cox比例风险回归模型估计风险比等。\n",
+ "3. 该文献的主要结论是:在挪威没有叶酸强化食品的情况下,叶酸加维生素$\\mathsf{B}_{12}$治疗与缺血性心脏病患者的癌症结局和全因死亡率增加有关。\n",
+ "\n",
+ "**参考文献**\n",
+ "- [VD] In2Norwegianhomocysteine-lowering trialsamongpatientswithischemicheart disease, there was a statistically nonsignificantincreaseincancerincidenceinthe groupsassignedtofolicacidtreatment.15,16 Our study was performed to explore whetherfolicacidtreatmentwasassociatedwithcanceroutcomesandall-cause mortality after extended follow-up.\n",
+ "- [VD] Survivalcurveswereconstructedusing theKaplan-Meiermethodanddifferences insurvivalbetweengroupswereanalyzed usingthelog-ranktest.Estimatesofhazard ratios (HRs) with $95\\%$ CIs were obtainedbyusingCoxproportionalhazards regressionmodelsstratifiedbytrial.\n",
+ "- [VD] Conclusion Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods.\n"
+ ]
+ }
+ ],
+ "source": [
+ "resp = rag.query(prompt1, param=QueryParam(mode=\"mix\", top_k=5))\n",
+ "print(resp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4e5bfad24cb721a8",
+ "metadata": {},
+ "source": "#### split by character only"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "44e2992dc95f8ce0",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:47:40.988796Z",
+ "start_time": "2025-01-09T03:47:40.982648Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "WORKING_DIR = \"../../llm_rag/paper_db/R000088_test2\"\n",
+ "if not os.path.exists(WORKING_DIR):\n",
+ " os.mkdir(WORKING_DIR)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "62c63385d2d973d5",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:51:39.951329Z",
+ "start_time": "2025-01-09T03:49:15.218976Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:lightrag:Logger initialized for working directory: ../../llm_rag/paper_db/R000088_test2\n",
+ "INFO:lightrag:Load KV llm_response_cache with 0 data\n",
+ "INFO:lightrag:Load KV full_docs with 0 data\n",
+ "INFO:lightrag:Load KV text_chunks with 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_entities.json'} 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_relationships.json'} 0 data\n",
+ "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_chunks.json'} 0 data\n",
+ "INFO:lightrag:Loaded document status storage with 0 records\n",
+ "INFO:lightrag:Processing 1 new unique documents\n",
+ "Processing batch 1: 0%| | 0/1 [00:00, ?it/s]INFO:lightrag:Inserting 12 vectors to chunks\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/1 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 100%|██████████| 1/1 [00:02<00:00, 2.95s/batch]\u001b[A\n",
+ "\n",
+ "Extracting entities from chunks: 0%| | 0/12 [00:00, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 1 chunks, 0 entities(duplicated), 0 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 8%|▊ | 1/12 [00:03<00:43, 3.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 2 chunks, 8 entities(duplicated), 8 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 17%|█▋ | 2/12 [00:29<02:44, 16.46s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠸ Processed 3 chunks, 17 entities(duplicated), 15 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 25%|██▌ | 3/12 [00:30<01:25, 9.45s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠼ Processed 4 chunks, 27 entities(duplicated), 22 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 33%|███▎ | 4/12 [00:39<01:16, 9.52s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠴ Processed 5 chunks, 36 entities(duplicated), 33 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 42%|████▏ | 5/12 [00:40<00:43, 6.24s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠦ Processed 6 chunks, 49 entities(duplicated), 42 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 50%|█████ | 6/12 [00:49<00:43, 7.33s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠧ Processed 7 chunks, 62 entities(duplicated), 65 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 58%|█████▊ | 7/12 [01:05<00:50, 10.05s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠇ Processed 8 chunks, 81 entities(duplicated), 90 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 67%|██████▋ | 8/12 [01:23<00:50, 12.69s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠏ Processed 9 chunks, 99 entities(duplicated), 117 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 75%|███████▌ | 9/12 [01:32<00:34, 11.54s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠋ Processed 10 chunks, 123 entities(duplicated), 140 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 83%|████████▎ | 10/12 [01:48<00:25, 12.79s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠙ Processed 11 chunks, 158 entities(duplicated), 174 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 92%|█████████▏| 11/12 [02:03<00:13, 13.50s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "⠹ Processed 12 chunks, 194 entities(duplicated), 221 relations(duplicated)\r"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Extracting entities from chunks: 100%|██████████| 12/12 [02:13<00:00, 11.15s/chunk]\u001b[A\n",
+ "INFO:lightrag:Inserting entities into storage...\n",
+ "\n",
+ "Inserting entities: 100%|██████████| 170/170 [00:00<00:00, 11610.25entity/s]\n",
+ "INFO:lightrag:Inserting relationships into storage...\n",
+ "\n",
+ "Inserting relationships: 100%|██████████| 218/218 [00:00<00:00, 15913.51relationship/s]\n",
+ "INFO:lightrag:Inserting 170 vectors to entities\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/6 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 17%|█▋ | 1/6 [00:01<00:05, 1.10s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 33%|███▎ | 2/6 [00:02<00:04, 1.07s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 50%|█████ | 3/6 [00:02<00:02, 1.33batch/s]\u001b[A\n",
+ "Generating embeddings: 67%|██████▋ | 4/6 [00:02<00:01, 1.67batch/s]\u001b[A\n",
+ "Generating embeddings: 83%|████████▎ | 5/6 [00:03<00:00, 1.95batch/s]\u001b[A\n",
+ "Generating embeddings: 100%|██████████| 6/6 [00:03<00:00, 1.66batch/s]\u001b[A\n",
+ "INFO:lightrag:Inserting 218 vectors to relationships\n",
+ "\n",
+ "Generating embeddings: 0%| | 0/7 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 14%|█▍ | 1/7 [00:01<00:10, 1.74s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 29%|██▊ | 2/7 [00:02<00:05, 1.04s/batch]\u001b[A\n",
+ "Generating embeddings: 43%|████▎ | 3/7 [00:02<00:02, 1.35batch/s]\u001b[A\n",
+ "Generating embeddings: 57%|█████▋ | 4/7 [00:03<00:01, 1.69batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "\n",
+ "Generating embeddings: 71%|███████▏ | 5/7 [00:03<00:01, 1.96batch/s]\u001b[A\n",
+ "Generating embeddings: 86%|████████▌ | 6/7 [00:03<00:00, 2.17batch/s]\u001b[A\n",
+ "Generating embeddings: 100%|██████████| 7/7 [00:04<00:00, 1.68batch/s]\u001b[A\n",
+ "INFO:lightrag:Writing graph with 174 nodes, 218 edges\n",
+ "Processing batch 1: 100%|██████████| 1/1 [02:24<00:00, 144.69s/it]\n"
+ ]
+ }
+ ],
+ "source": [
+ "rag = LightRAG(\n",
+ " working_dir=WORKING_DIR,\n",
+ " llm_model_func=llm_model_func,\n",
+ " embedding_func=EmbeddingFunc(\n",
+ " embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
+ " ),\n",
+ " chunk_token_size=512,\n",
+ ")\n",
+ "\n",
+ "# rag.insert(content)\n",
+ "rag.insert(content, split_by_character=\"\\n#\", split_by_character_only=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "3c7aa9836d8d43c7",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2025-01-09T03:52:37.000418Z",
+ "start_time": "2025-01-09T03:52:09.933584Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:Local query uses 5 entites, 3 relations, 2 text units\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
+ "INFO:lightrag:Global query uses 9 entites, 5 relations, 4 text units\n",
+ "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "<分析>\n",
+ "- **该文献主要研究的问题是什么?**\n",
+ " - **思考过程**:通过浏览论文的标题、摘要、引言等部分,寻找关于研究目的和问题的描述。论文标题为“Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12”,摘要中的“Objective”部分明确指出研究目的是“To evaluate effects of treatment with B vitamins on cancer outcomes and all-cause mortality in 2 randomized controlled trials”。因此,可以确定该文献主要研究的问题是评估B族维生素治疗对两项随机对照试验中癌症结局和全因死亡率的影响。\n",
+ "- **该文献采用什么方法进行分析?**\n",
+ " - **思考过程**:在论文的“METHODS”部分详细描述了研究方法。文中提到这是一个对两项随机、双盲、安慰剂对照临床试验(Norwegian Vitamin [NORVIT] trial和Western Norway B Vitamin Intervention Trial [WENBIT])数据的联合分析,并进行了观察性的试验后随访。具体包括对参与者进行分组干预(不同剂量的叶酸、维生素B12、维生素B6或安慰剂),收集临床信息和血样,分析循环B族维生素、同型半胱氨酸和可替宁等指标,并进行基因分型等,还涉及到多种统计分析方法,如计算预期癌症发生率、构建生存曲线、进行Cox比例风险回归模型分析等。\n",
+ "- **该文献的主要结论是什么?**\n",
+ " - **思考过程**:在论文的“Results”和“Conclusion”部分寻找主要结论。研究结果表明,在治疗期间,接受叶酸加维生素B12治疗的参与者血清叶酸浓度显著增加,且在后续随访中,该组癌症发病率、癌症死亡率和全因死亡率均有所上升,主要是肺癌发病率增加,而维生素B6治疗未显示出显著影响。结论部分明确指出“Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods”。\n",
+ "分析>\n",
+ "\n",
+ "<回答>\n",
+ "- **主要研究问题**:评估B族维生素治疗对两项随机对照试验中癌症结局和全因死亡率的影响。\n",
+ "- **研究方法**:采用对两项随机、双盲、安慰剂对照临床试验(Norwegian Vitamin [NORVIT] trial和Western Norway B Vitamin Intervention Trial [WENBIT])数据的联合分析,并进行观察性的试验后随访,涉及分组干预、多种指标检测以及多种统计分析方法。\n",
+ "- **主要结论**:在挪威(食品中未添加叶酸),对于缺血性心脏病患者,叶酸加维生素B12治疗与癌症结局和全因死亡率的增加有关,而维生素B6治疗未显示出显著影响。\n",
+ "\n",
+ "**参考文献**\n",
+ "- [VD] Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12\n",
+ "- [VD] METHODS Study Design, Participants, and Study Intervention\n",
+ "- [VD] RESULTS\n",
+ "- [VD] Conclusion\n",
+ "- [VD] Objective To evaluate effects of treatment with B vitamins on cancer outcomes and all-cause mortality in 2 randomized controlled trials.\n"
+ ]
+ }
+ ],
+ "source": [
+ "resp = rag.query(prompt1, param=QueryParam(mode=\"mix\", top_k=5))\n",
+ "print(resp)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7ba6fa79a2550d10",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 7496d736..b94ff821 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -314,18 +314,25 @@ class LightRAG:
"JsonDocStatusStorage": JsonDocStatusStorage,
}
- def insert(self, string_or_strings, split_by_character=None):
+ def insert(
+ self, string_or_strings, split_by_character=None, split_by_character_only=False
+ ):
loop = always_get_an_event_loop()
return loop.run_until_complete(
- self.ainsert(string_or_strings, split_by_character)
+ self.ainsert(string_or_strings, split_by_character, split_by_character_only)
)
- async def ainsert(self, string_or_strings, split_by_character):
+ async def ainsert(
+ self, string_or_strings, split_by_character, split_by_character_only
+ ):
"""Insert documents with checkpoint support
Args:
string_or_strings: Single document string or list of document strings
- split_by_character: if split_by_character is not None, split the string by character
+ split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
+ chunk_size, split the sub chunk by token size.
+ split_by_character_only: if split_by_character_only is True, split the string by character only, when
+ split_by_character is None, this parameter is ignored.
"""
if isinstance(string_or_strings, str):
string_or_strings = [string_or_strings]
@@ -384,6 +391,7 @@ class LightRAG:
for dp in chunking_by_token_size(
doc["content"],
split_by_character=split_by_character,
+ split_by_character_only=split_by_character_only,
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
diff --git a/lightrag/operate.py b/lightrag/operate.py
index 1128b41c..58ae3703 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -36,6 +36,7 @@ import time
def chunking_by_token_size(
content: str,
split_by_character=None,
+ split_by_character_only=False,
overlap_token_size=128,
max_token_size=1024,
tiktoken_model="gpt-4o",
@@ -45,21 +46,26 @@ def chunking_by_token_size(
if split_by_character:
raw_chunks = content.split(split_by_character)
new_chunks = []
- for chunk in raw_chunks:
- _tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
- if len(_tokens) > max_token_size:
- for start in range(
- 0, len(_tokens), max_token_size - overlap_token_size
- ):
- chunk_content = decode_tokens_by_tiktoken(
- _tokens[start : start + max_token_size],
- model_name=tiktoken_model,
- )
- new_chunks.append(
- (min(max_token_size, len(_tokens) - start), chunk_content)
- )
- else:
+ if split_by_character_only:
+ for chunk in raw_chunks:
+ _tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
new_chunks.append((len(_tokens), chunk))
+ else:
+ for chunk in raw_chunks:
+ _tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
+ if len(_tokens) > max_token_size:
+ for start in range(
+ 0, len(_tokens), max_token_size - overlap_token_size
+ ):
+ chunk_content = decode_tokens_by_tiktoken(
+ _tokens[start : start + max_token_size],
+ model_name=tiktoken_model,
+ )
+ new_chunks.append(
+ (min(max_token_size, len(_tokens) - start), chunk_content)
+ )
+ else:
+ new_chunks.append((len(_tokens), chunk))
for index, (_len, chunk) in enumerate(new_chunks):
results.append(
{
diff --git a/test.ipynb b/test.ipynb
deleted file mode 100644
index 2b9253b4..00000000
--- a/test.ipynb
+++ /dev/null
@@ -1,740 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "4b5690db12e34685",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:38:34.174205Z",
- "start_time": "2025-01-07T05:38:29.978194Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import logging\n",
- "import numpy as np\n",
- "from lightrag import LightRAG, QueryParam\n",
- "from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
- "from lightrag.utils import EmbeddingFunc\n",
- "import nest_asyncio"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "8c8ee7c061bf9159",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:38:37.440083Z",
- "start_time": "2025-01-07T05:38:37.437666Z"
- }
- },
- "outputs": [],
- "source": [
- "nest_asyncio.apply()\n",
- "WORKING_DIR = \"../llm_rag/paper_db/R000088_test2\"\n",
- "logging.basicConfig(format=\"%(levelname)s:%(message)s\", level=logging.INFO)\n",
- "if not os.path.exists(WORKING_DIR):\n",
- " os.mkdir(WORKING_DIR)\n",
- "os.environ[\"doubao_api\"] = \"6b890250-0cf6-4eb1-aa82-9c9d711398a7\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "a5009d16e0851dca",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:38:42.594315Z",
- "start_time": "2025-01-07T05:38:42.590800Z"
- }
- },
- "outputs": [],
- "source": [
- "async def llm_model_func(\n",
- " prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs\n",
- ") -> str:\n",
- " return await openai_complete_if_cache(\n",
- " \"ep-20241218114828-2tlww\",\n",
- " prompt,\n",
- " system_prompt=system_prompt,\n",
- " history_messages=history_messages,\n",
- " api_key=os.getenv(\"doubao_api\"),\n",
- " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
- " **kwargs,\n",
- " )\n",
- "\n",
- "\n",
- "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
- " return await openai_embedding(\n",
- " texts,\n",
- " model=\"ep-20241231173413-pgjmk\",\n",
- " api_key=os.getenv(\"doubao_api\"),\n",
- " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
- " )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "397fcad24ce4d0ed",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:38:44.016901Z",
- "start_time": "2025-01-07T05:38:44.006291Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:lightrag:Logger initialized for working directory: ../llm_rag/paper_db/R000088_test2\n",
- "INFO:lightrag:Load KV llm_response_cache with 0 data\n",
- "INFO:lightrag:Load KV full_docs with 0 data\n",
- "INFO:lightrag:Load KV text_chunks with 0 data\n",
- "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_entities.json'} 0 data\n",
- "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_relationships.json'} 0 data\n",
- "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../llm_rag/paper_db/R000088_test2/vdb_chunks.json'} 0 data\n",
- "INFO:lightrag:Loaded document status storage with 0 records\n"
- ]
- }
- ],
- "source": [
- "rag = LightRAG(\n",
- " working_dir=WORKING_DIR,\n",
- " llm_model_func=llm_model_func,\n",
- " embedding_func=EmbeddingFunc(\n",
- " embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
- " ),\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "1dc3603677f7484d",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:38:47.509111Z",
- "start_time": "2025-01-07T05:38:47.501997Z"
- }
- },
- "outputs": [],
- "source": [
- "with open(\n",
- " \"../llm_rag/example/R000088/auto/R000088_full_txt.md\", \"r\", encoding=\"utf-8\"\n",
- ") as f:\n",
- " content = f.read()\n",
- "\n",
- "\n",
- "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
- " return await openai_embedding(\n",
- " texts,\n",
- " model=\"ep-20241231173413-pgjmk\",\n",
- " api_key=os.getenv(\"doubao_api\"),\n",
- " base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
- " )\n",
- "\n",
- "\n",
- "async def get_embedding_dim():\n",
- " test_text = [\"This is a test sentence.\"]\n",
- " embedding = await embedding_func(test_text)\n",
- " embedding_dim = embedding.shape[1]\n",
- " return embedding_dim"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "6844202606acfbe5",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:38:50.666764Z",
- "start_time": "2025-01-07T05:38:50.247712Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n"
- ]
- }
- ],
- "source": [
- "embedding_dimension = await get_embedding_dim()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "d6273839d9681403",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:42:33.085507Z",
- "start_time": "2025-01-07T05:38:56.789348Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:lightrag:Processing 1 new unique documents\n",
- "Processing batch 1: 0%| | 0/1 [00:00, ?it/s]INFO:lightrag:Inserting 22 vectors to chunks\n",
- "\n",
- "Generating embeddings: 0%| | 0/1 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 100%|██████████| 1/1 [00:03<00:00, 3.85s/batch]\u001b[A\n",
- "\n",
- "Extracting entities from chunks: 0%| | 0/22 [00:00, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠙ Processed 1 chunks, 7 entities(duplicated), 6 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 5%|▍ | 1/22 [00:23<08:21, 23.90s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠹ Processed 2 chunks, 12 entities(duplicated), 15 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 9%|▉ | 2/22 [00:26<03:50, 11.51s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠸ Processed 3 chunks, 20 entities(duplicated), 22 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 14%|█▎ | 3/22 [00:34<03:08, 9.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠼ Processed 4 chunks, 30 entities(duplicated), 30 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 18%|█▊ | 4/22 [00:37<02:09, 7.21s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠴ Processed 5 chunks, 39 entities(duplicated), 39 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 23%|██▎ | 5/22 [00:38<01:19, 4.70s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠦ Processed 6 chunks, 39 entities(duplicated), 39 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 27%|██▋ | 6/22 [00:38<00:53, 3.32s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠧ Processed 7 chunks, 47 entities(duplicated), 50 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 32%|███▏ | 7/22 [00:39<00:39, 2.65s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠇ Processed 8 chunks, 56 entities(duplicated), 58 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 36%|███▋ | 8/22 [00:40<00:29, 2.13s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠏ Processed 9 chunks, 63 entities(duplicated), 69 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 41%|████ | 9/22 [00:47<00:43, 3.38s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠋ Processed 10 chunks, 81 entities(duplicated), 81 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 45%|████▌ | 10/22 [00:48<00:32, 2.73s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠙ Processed 11 chunks, 92 entities(duplicated), 89 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 50%|█████ | 11/22 [01:01<01:05, 5.99s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠹ Processed 12 chunks, 107 entities(duplicated), 107 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 55%|█████▍ | 12/22 [01:10<01:09, 6.94s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠸ Processed 13 chunks, 127 entities(duplicated), 126 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 59%|█████▉ | 13/22 [01:16<00:59, 6.59s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠼ Processed 14 chunks, 151 entities(duplicated), 137 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 64%|██████▎ | 14/22 [01:16<00:37, 4.68s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠴ Processed 15 chunks, 161 entities(duplicated), 144 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 68%|██████▊ | 15/22 [01:17<00:23, 3.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠦ Processed 16 chunks, 176 entities(duplicated), 154 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 73%|███████▎ | 16/22 [01:19<00:18, 3.04s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠧ Processed 17 chunks, 189 entities(duplicated), 162 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 77%|███████▋ | 17/22 [01:21<00:13, 2.80s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠇ Processed 18 chunks, 207 entities(duplicated), 186 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 82%|████████▏ | 18/22 [01:38<00:28, 7.06s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠏ Processed 19 chunks, 222 entities(duplicated), 200 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 86%|████████▋ | 19/22 [01:44<00:19, 6.61s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠋ Processed 20 chunks, 310 entities(duplicated), 219 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 91%|█████████ | 20/22 [02:12<00:26, 13.19s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠙ Processed 21 chunks, 345 entities(duplicated), 263 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 95%|█████████▌| 21/22 [02:32<00:15, 15.15s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "⠹ Processed 22 chunks, 417 entities(duplicated), 285 relations(duplicated)\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "Extracting entities from chunks: 100%|██████████| 22/22 [03:21<00:00, 9.18s/chunk]\u001b[A\n",
- "INFO:lightrag:Inserting entities into storage...\n",
- "\n",
- "Inserting entities: 100%|██████████| 327/327 [00:00<00:00, 13446.31entity/s]\n",
- "INFO:lightrag:Inserting relationships into storage...\n",
- "\n",
- "Inserting relationships: 100%|██████████| 272/272 [00:00<00:00, 16740.29relationship/s]\n",
- "INFO:lightrag:Inserting 327 vectors to entities\n",
- "\n",
- "Generating embeddings: 0%| | 0/11 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 9%|▉ | 1/11 [00:00<00:09, 1.02batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 18%|█▊ | 2/11 [00:02<00:09, 1.07s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 27%|██▋ | 3/11 [00:02<00:06, 1.33batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 36%|███▋ | 4/11 [00:02<00:04, 1.67batch/s]\u001b[A\n",
- "Generating embeddings: 45%|████▌ | 5/11 [00:03<00:03, 1.93batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 55%|█████▍ | 6/11 [00:03<00:02, 2.15batch/s]\u001b[A\n",
- "Generating embeddings: 64%|██████▎ | 7/11 [00:03<00:01, 2.33batch/s]\u001b[A\n",
- "Generating embeddings: 73%|███████▎ | 8/11 [00:04<00:01, 2.46batch/s]\u001b[A\n",
- "Generating embeddings: 82%|████████▏ | 9/11 [00:04<00:00, 2.55batch/s]\u001b[A\n",
- "Generating embeddings: 91%|█████████ | 10/11 [00:05<00:00, 2.64batch/s]\u001b[A\n",
- "Generating embeddings: 100%|██████████| 11/11 [00:05<00:00, 2.04batch/s]\u001b[A\n",
- "INFO:lightrag:Inserting 272 vectors to relationships\n",
- "\n",
- "Generating embeddings: 0%| | 0/9 [00:00, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 11%|█ | 1/9 [00:01<00:11, 1.39s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 22%|██▏ | 2/9 [00:02<00:07, 1.01s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 33%|███▎ | 3/9 [00:02<00:04, 1.40batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "\n",
- "Generating embeddings: 44%|████▍ | 4/9 [00:02<00:02, 1.74batch/s]\u001b[A\n",
- "Generating embeddings: 56%|█████▌ | 5/9 [00:03<00:01, 2.01batch/s]\u001b[A\n",
- "Generating embeddings: 67%|██████▋ | 6/9 [00:03<00:01, 2.23batch/s]\u001b[A\n",
- "Generating embeddings: 78%|███████▊ | 7/9 [00:03<00:00, 2.39batch/s]\u001b[A\n",
- "Generating embeddings: 89%|████████▉ | 8/9 [00:04<00:00, 2.52batch/s]\u001b[A\n",
- "Generating embeddings: 100%|██████████| 9/9 [00:04<00:00, 1.93batch/s]\u001b[A\n",
- "INFO:lightrag:Writing graph with 331 nodes, 272 edges\n",
- "Processing batch 1: 100%|██████████| 1/1 [03:36<00:00, 216.27s/it]\n"
- ]
- }
- ],
- "source": [
- "# rag.insert(content)\n",
- "rag.insert(content, split_by_character=\"\\n#\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "c4f9ae517151a01d",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:42:50.044809Z",
- "start_time": "2025-01-07T05:42:50.041256Z"
- }
- },
- "outputs": [],
- "source": [
- "prompt1 = \"\"\"\n",
- "你是一名经验丰富的论文分析科学家,你的任务是对一篇英文学术研究论文进行关键信息提取并深入分析。\n",
- "\n",
- "请按照以下步骤进行分析:\n",
- "1. 对于论文的分析对象相关问题:\n",
- " - 仔细查找论文中的研究队列相关信息,确定分析对象来自哪些研究队列。\n",
- " - 查看如果来自多个队列,文中是单独分析还是联合分析。\n",
- " - 找出这些队列的名称。\n",
- " - 确定这些队列开展的国家有哪些(注意:“澳门”记为“中国澳门”,“香港”记为“中国香港”,“台湾”记为“中国台湾”,其余采用国家回答)。\n",
- " - 明确队列研究对象的性别分布(“男性”、“女性”或“全体”)。\n",
- " - 查找队列收集结束时,研究对象年龄分布(平均值/中位值、标准差或范围),若信息缺失则根据年龄推理规则进行推理:当论文只提供了队列开展时对象的年龄,应根据队列结束时间推算最终年龄范围。例如:1989建立队列时年龄为25 - 42岁,随访至2011年结束,则推算年龄范围为47 - 64岁。\n",
- " - 确定队列研究时间线,即哪一年开始收集信息/建立队列,哪一年结束,若信息缺失则根据队列时间线推理规则进行推理:如论文只提供了建立队列时间为1995,进行了10年的随访,则推算队列结束时间为2005年。\n",
- " - 找出队列结束时实际参与研究人数是多少。\n",
- "首先在<分析>标签中,针对每个问题详细分析你的思考过程。然后在<回答>标签中给出所有问题的最终答案。\"\"\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "7a6491385b050095",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2025-01-07T05:43:24.751628Z",
- "start_time": "2025-01-07T05:42:50.865679Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
- "INFO:lightrag:kw_prompt result:\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"high_level_keywords\": [\"英文学术研究论文分析\", \"关键信息提取\", \"深入分析\"],\n",
- " \"low_level_keywords\": [\"研究队列\", \"队列名称\", \"队列开展国家\", \"性别分布\", \"年龄分布\", \"队列研究时间线\", \"实际参与研究人数\"]\n",
- "}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:lightrag:Local query uses 60 entites, 38 relations, 6 text units\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
- "INFO:lightrag:Global query uses 72 entites, 60 relations, 4 text units\n",
- "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<分析>\n",
- "- **分析对象来自哪些研究队列及是单独分析还是联合分析**:\n",
- " 通过查找论文内容,发现文中提到“This is a combined analysis of data from 2 randomized, double-blind, placebo-controlled clinical trials (Norwegian Vitamin [NORVIT] trial15 and Western Norway B Vitamin Intervention Trial [WENBIT]16)”,明确是对两个队列的数据进行联合分析,队列名称分别为“Norwegian Vitamin (NORVIT) trial”和“Western Norway B Vitamin Intervention Trial (WENBIT)”。\n",
- "- **队列开展的国家**:\n",
- " 文中多次提及研究在挪威进行,如“combined analyses and extended follow-up of 2 vitamin B intervention trials among patients with ischemic heart disease in Norway”,所以确定研究开展的国家是挪威。\n",
- "- **队列研究对象的性别分布**:\n",
- " 从“Mean (SD) age was 62.3 (11.0) years and 23.5% of participants were women”可知,研究对象包含男性和女性,即全体。\n",
- "- **队列收集结束时研究对象年龄分布**:\n",
- " 已知“Mean (SD) age was 62.3 (11.0) years”是基线时年龄信息,“Median (interquartile range) duration of extended follow-up through December 31, 2007, was 78 (61 - 90) months”,由于随访的中位时间是78个月(约6.5年),所以可推算队列收集结束时研究对象年龄均值约为62.3 + 6.5 = 68.8岁(标准差仍为11.0年)。\n",
- "- **队列研究时间线**:\n",
- " 根据“2 randomized, double-blind, placebo-controlled clinical trials (Norwegian Vitamin [NORVIT] trial15 and Western Norway B Vitamin Intervention Trial [WENBIT]16) conducted between 1998 and 2005, and an observational posttrial follow-up through December 31, 2007”可知,队列开始收集信息时间为1998年,结束时间为2007年12月31日。\n",
- "- **队列结束时实际参与研究人数**:\n",
- " 由“A total of 6837 individuals were included in the combined analyses, of whom 6261 (91.6%) participated in posttrial follow-up”可知,队列结束时实际参与研究人数为6261人。\n",
- "分析>\n",
- "\n",
- "<回答>\n",
- "- 分析对象来自“Norwegian Vitamin (NORVIT) trial”和“Western Norway B Vitamin Intervention Trial (WENBIT)”两个研究队列,文中是对这两个队列的数据进行联合分析。\n",
- "- 队列开展的国家是挪威。\n",
- "- 队列研究对象的性别分布为全体。\n",
- "- 队列收集结束时,研究对象年龄分布均值约为68.8岁,标准差为11.0年。\n",
- "- 队列研究时间线为1998年开始收集信息/建立队列,2007年12月31日结束。\n",
- "- 队列结束时实际参与研究人数是6261人。\n"
- ]
- }
- ],
- "source": [
- "print(rag.query(prompt1, param=QueryParam(mode=\"hybrid\")))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "fef9d06983da47af",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
From acde4ed173614bca12f50a7a2f185b7f6f0ef2c1 Mon Sep 17 00:00:00 2001
From: adikalra <54812001+AdiKalra@users.noreply.github.com>
Date: Thu, 9 Jan 2025 17:20:24 +0530
Subject: [PATCH 21/21] Add custom chunking function.
---
lightrag/lightrag.py | 7 ++++++-
lightrag/operate.py | 1 +
2 files changed, 7 insertions(+), 1 deletion(-)
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 9905ee74..596fbdbf 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -187,6 +187,10 @@ class LightRAG:
# Add new field for document status storage type
doc_status_storage: str = field(default="JsonDocStatusStorage")
+ # Custom Chunking Function
+ chunking_func: callable = chunking_by_token_size
+ chunking_func_kwargs: dict = field(default_factory=dict)
+
def __post_init__(self):
log_file = os.path.join("lightrag.log")
set_logger(log_file)
@@ -388,13 +392,14 @@ class LightRAG:
**dp,
"full_doc_id": doc_id,
}
- for dp in chunking_by_token_size(
+ for dp in self.chunking_func(
doc["content"],
split_by_character=split_by_character,
split_by_character_only=split_by_character_only,
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
+ **self.chunking_func_kwargs,
)
}
diff --git a/lightrag/operate.py b/lightrag/operate.py
index 09871659..7216c07f 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -39,6 +39,7 @@ def chunking_by_token_size(
overlap_token_size=128,
max_token_size=1024,
tiktoken_model="gpt-4o",
+ **kwargs,
):
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
results = []