Refactor node expansion logic with improved degree and size calculation

This commit is contained in:
yangdx
2025-03-14 18:15:52 +08:00
parent 20c976584b
commit 1ae65c9272

View File

@@ -370,21 +370,19 @@ const useLightrangeGraph = () => {
const processedNodes: RawNodeType[] = [];
for (const node of extendedGraph.nodes) {
// Generate random color values
const r = Math.floor(Math.random() * 256);
const g = Math.floor(Math.random() * 256);
const b = Math.floor(Math.random() * 256);
const color = `rgb(${r}, ${g}, ${b})`;
seedrandom(node.id, { global: true });
const color = randomColor();
// Create a properly typed RawNodeType
processedNodes.push({
id: node.id,
labels: node.labels,
properties: node.properties,
size: 10, // Default size
x: Math.random(), // Random position
y: Math.random(), // Random position
size: 10, // Default size, will be calculated later
x: Math.random(), // Random position, will be adjusted later
y: Math.random(), // Random position, will be adjusted later
color: color, // Random color
degree: 0 // Initial degree
degree: 0 // Initial degree, will be calculated later
});
}
@@ -414,136 +412,168 @@ const useLightrangeGraph = () => {
// Get existing node IDs
const existingNodeIds = new Set(sigmaGraph.nodes());
// Check if there are any new nodes that can be connected to the selected node
let hasConnectableNewNodes = false;
for (const newNode of processedNodes) {
// STEP 1: Identify nodes and edges to keep
const nodesToAdd = new Set<string>();
const edgesToAdd = new Set<string>();
const nodesWithDiscardedEdges = new Set<string>();
// First identify connectable nodes (nodes connected to the expanded node)
for (const node of processedNodes) {
// Skip if node already exists
if (existingNodeIds.has(newNode.id)) {
if (existingNodeIds.has(node.id)) {
continue;
}
// Check if this node is connected to the selected node
const isConnected = processedEdges.some(
edge => (edge.source === nodeId && edge.target === newNode.id) ||
(edge.target === nodeId && edge.source === newNode.id)
edge => (edge.source === nodeId && edge.target === node.id) ||
(edge.target === nodeId && edge.source === node.id)
);
if (isConnected) {
hasConnectableNewNodes = true;
break;
nodesToAdd.add(node.id);
}
}
// If no new connectable nodes found, show toast and return
if (!hasConnectableNewNodes) {
if (nodesToAdd.size === 0) {
toast.info(t('graphPanel.propertiesView.node.noNewNodes'));
useGraphStore.getState().setIsFetching(false);
return;
}
// Then identify valid edges (edges where both nodes exist in the graph)
for (const edge of processedEdges) {
const sourceExists = existingNodeIds.has(edge.source) || nodesToAdd.has(edge.source);
const targetExists = existingNodeIds.has(edge.target) || nodesToAdd.has(edge.target);
if (sourceExists && targetExists) {
edgesToAdd.add(edge.id);
} else {
// Mark nodes that had edges discarded
if (nodesToAdd.has(edge.source)) {
nodesWithDiscardedEdges.add(edge.source);
}
if (nodesToAdd.has(edge.target)) {
nodesWithDiscardedEdges.add(edge.target);
}
}
}
// STEP 2: Calculate node degrees and sizes
const nodeDegrees = new Map<string, number>();
// Calculate degrees from kept edges
for (const edgeId of edgesToAdd) {
const edge = processedEdges.find(e => e.id === edgeId)!;
nodeDegrees.set(edge.source, (nodeDegrees.get(edge.source) || 0) + 1);
nodeDegrees.set(edge.target, (nodeDegrees.get(edge.target) || 0) + 1);
}
// Add +1 to degree for nodes that had edges discarded
for (const nodeId of nodesWithDiscardedEdges) {
nodeDegrees.set(nodeId, (nodeDegrees.get(nodeId) || 0) + 1);
}
// Get degree range from existing graph for size calculations
let minDegree = Number.MAX_SAFE_INTEGER;
const minDegree = 1;
let maxDegree = 0;
sigmaGraph.forEachNode(node => {
const degree = sigmaGraph.degree(node);
minDegree = Math.min(minDegree, degree);
maxDegree = Math.max(maxDegree, degree);
});
// Update maxDegree with new node degrees
for (const [, degree] of nodeDegrees.entries()) {
maxDegree = Math.max(maxDegree, degree);
}
// Calculate size formula parameters
const range = maxDegree - minDegree || 1; // Avoid division by zero
const scale = Constants.maxNodeSize - Constants.minNodeSize;
// Add new nodes from the processed nodes
for (const newNode of processedNodes) {
// Skip if node already exists
if (existingNodeIds.has(newNode.id)) {
continue;
}
// Check if this node is connected to the selected node
const isConnected = processedEdges.some(
edge => (edge.source === nodeId && edge.target === newNode.id) ||
(edge.target === nodeId && edge.source === newNode.id)
// STEP 3: Add nodes and edges to the graph
// Add new nodes
for (const nodeId of nodesToAdd) {
const newNode = processedNodes.find(n => n.id === nodeId)!;
const nodeDegree = nodeDegrees.get(nodeId) || 0;
// Calculate node size
const nodeSize = Math.round(
Constants.minNodeSize + scale * Math.pow((nodeDegree - minDegree) / range, 0.5)
);
// Calculate position relative to expanded node
const x = nodePositions[nodeId]?.x ||
(nodePositions[nodeToExpand.id].x + (Math.random() - 0.5) * 0.5);
const y = nodePositions[nodeId]?.y ||
(nodePositions[nodeToExpand.id].y + (Math.random() - 0.5) * 0.5);
// Add the new node to the sigma graph
sigmaGraph.addNode(nodeId, {
label: newNode.labels.join(', '),
color: newNode.color,
x: x,
y: y,
size: nodeSize,
borderColor: Constants.nodeBorderColor,
borderSize: 0.2
});
if (isConnected) {
// Calculate node degree (number of connected edges)
const nodeDegree = processedEdges.filter(edge =>
edge.source === newNode.id || edge.target === newNode.id
).length;
// Calculate node size using the same formula as in fetchGraph
const nodeSize = Math.round(
Constants.minNodeSize + scale * Math.pow((nodeDegree - minDegree) / range, 0.5)
);
// Add the new node to the graph with calculated size
sigmaGraph.addNode(newNode.id, {
label: newNode.labels.join(', '),
color: newNode.color,
x: nodePositions[nodeId].x + (Math.random() - 0.5) * 0.5,
y: nodePositions[nodeId].y + (Math.random() - 0.5) * 0.5,
size: nodeSize,
borderColor: '#000',
borderSize: 0.2
});
// Add the node to the raw graph
if (!rawGraph.getNode(newNode.id)) {
// Update the node size to match the calculated size
newNode.size = nodeSize;
// Add to nodes array
rawGraph.nodes.push(newNode);
// Update nodeIdMap
rawGraph.nodeIdMap[newNode.id] = rawGraph.nodes.length - 1;
}
// Add the node to the raw graph
if (!rawGraph.getNode(nodeId)) {
// Update node properties
newNode.size = nodeSize;
newNode.x = x;
newNode.y = y;
newNode.degree = nodeDegree;
// Add to nodes array
rawGraph.nodes.push(newNode);
// Update nodeIdMap
rawGraph.nodeIdMap[nodeId] = rawGraph.nodes.length - 1;
}
}
// Add new edges
for (const newEdge of processedEdges) {
// Only add edges where both source and target exist in the graph
if (sigmaGraph.hasNode(newEdge.source) && sigmaGraph.hasNode(newEdge.target)) {
// Skip if edge already exists
if (sigmaGraph.hasEdge(newEdge.source, newEdge.target)) {
continue;
}
for (const edgeId of edgesToAdd) {
const newEdge = processedEdges.find(e => e.id === edgeId)!;
// Skip if edge already exists
if (sigmaGraph.hasEdge(newEdge.source, newEdge.target)) {
continue;
}
// Add the edge to the sigma graph
newEdge.dynamicId = sigmaGraph.addDirectedEdge(newEdge.source, newEdge.target, {
label: newEdge.type || undefined
});
// Add the edge to the sigma graph
newEdge.dynamicId = sigmaGraph.addDirectedEdge(newEdge.source, newEdge.target, {
label: newEdge.type || undefined
});
// Add the edge to the raw graph
if (!rawGraph.getEdge(newEdge.id, false)) {
// Add to edges array
rawGraph.edges.push(newEdge);
// Update edgeIdMap
rawGraph.edgeIdMap[newEdge.id] = rawGraph.edges.length - 1;
// Update dynamic edge map
rawGraph.edgeDynamicIdMap[newEdge.dynamicId] = rawGraph.edges.length - 1;
}
// Add the edge to the raw graph
if (!rawGraph.getEdge(newEdge.id, false)) {
// Add to edges array
rawGraph.edges.push(newEdge);
// Update edgeIdMap
rawGraph.edgeIdMap[newEdge.id] = rawGraph.edges.length - 1;
// Update dynamic edge map
rawGraph.edgeDynamicIdMap[newEdge.dynamicId] = rawGraph.edges.length - 1;
}
}
// Update the dynamic edge map
rawGraph.buildDynamicMap();
// Restore positions for existing nodes
Object.entries(nodePositions).forEach(([id, position]) => {
if (sigmaGraph.hasNode(id)) {
sigmaGraph.setNodeAttribute(id, 'x', position.x);
sigmaGraph.setNodeAttribute(id, 'y', position.y);
}
});
// Update the size of the expanded node based on its new edge count
// STEP 4: Update the expanded node's size
if (sigmaGraph.hasNode(nodeId)) {
// Get the new degree of the expanded node
const expandedNodeDegree = sigmaGraph.degree(nodeId);
let expandedNodeDegree = sigmaGraph.degree(nodeId);
// Check if the expanded node had any discarded edges
if (nodesWithDiscardedEdges.has(nodeId)) {
expandedNodeDegree += 1; // Add +1 for discarded edges
}
// Calculate new size for the expanded node using the same parameters
// Calculate new size for the expanded node
const newSize = Math.round(
Constants.minNodeSize + scale * Math.pow((expandedNodeDegree - minDegree) / range, 0.5)
);
@@ -555,24 +585,17 @@ const useLightrangeGraph = () => {
const expandedNodeIndex = rawGraph.nodeIdMap[nodeId];
if (expandedNodeIndex !== undefined) {
rawGraph.nodes[expandedNodeIndex].size = newSize;
rawGraph.nodes[expandedNodeIndex].degree = expandedNodeDegree;
}
}
// Refresh the layout and store the node ID to reselect after refresh
const nodeIdToSelect = nodeId;
// Refresh the layout
useGraphStore.getState().refreshLayout();
// Use setTimeout to reselect the node after the layout refresh is complete
setTimeout(() => {
if (nodeIdToSelect) {
useGraphStore.getState().setSelectedNode(nodeIdToSelect, true);
}
}, 2000); // Wait a bit longer than the refreshLayout timeout (which is 10ms)
} catch (error) {
console.error('Error expanding node:', error);
} finally {
// Reset fetching state and node to expand
// Reset fetching state
useGraphStore.getState().setIsFetching(false);
}
};
@@ -585,7 +608,7 @@ const useLightrangeGraph = () => {
useGraphStore.getState().triggerNodeExpand(null);
}, 0);
}
}, [nodeToExpand, sigmaGraph, rawGraph]);
}, [nodeToExpand, sigmaGraph, rawGraph, t]);
// Helper function to get all nodes that will be deleted
const getNodesThatWillBeDeleted = useCallback((nodeId: string, graph: DirectedGraph) => {