Oracle Database support
Add oracle 23ai database as the KV/vector/graph storage
This commit is contained in:
127
examples/lightrag_oracle_demo.py
Normal file
127
examples/lightrag_oracle_demo.py
Normal file
@@ -0,0 +1,127 @@
|
||||
|
||||
|
||||
import sys, os
|
||||
print(os.getcwd())
|
||||
from pathlib import Path
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
sys.path.append(os.path.abspath(script_directory))
|
||||
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
# We use OpenAI compatible API to call LLM on Oracle Cloud
|
||||
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
|
||||
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
|
||||
APIKEY = "ocigenerativeai"
|
||||
CHATMODEL = "cohere.command-r-plus"
|
||||
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
CHATMODEL,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=APIKEY,
|
||||
base_url=BASE_URL,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model=EMBEDMODEL,
|
||||
api_key=APIKEY,
|
||||
base_url=BASE_URL,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Create Oracle DB connection
|
||||
# The `config` parameter is the connection configuration of Oracle DB
|
||||
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
oracle_db = OracleDB(config={
|
||||
"user":"RAG",
|
||||
"password":"xxxxxxxxx",
|
||||
"dsn":"xxxxxxx_medium",
|
||||
"config_dir":"dir/path/to/oracle/config",
|
||||
"wallet_location":"dir/path/to/oracle/wallet",
|
||||
"wallet_password":"xxxxxxxxx",
|
||||
"workspace":"company" # specify which docs we want to store and query
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
chunk_token_size=512,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage = "OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage"
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
rag.key_string_value_json_storage_cls.db = oracle_db
|
||||
rag.vector_db_storage_cls.db = oracle_db
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
# Perform search in different modes
|
||||
modes = ["naive", "local", "global", "hybrid"]
|
||||
for mode in modes:
|
||||
print("="*20, mode, "="*20)
|
||||
print(await rag.aquery("这个文章讲了什么?", param=QueryParam(mode=mode)))
|
||||
print("-"*100, "\n")
|
||||
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Reference in New Issue
Block a user