Add drop funtions to storage implementations

This commit is contained in:
yangdx
2025-03-30 15:17:57 +08:00
parent 1a25a78e8a
commit 1df4b777d7
10 changed files with 339 additions and 15 deletions

View File

@@ -1,4 +1,5 @@
import asyncio
import os
from dataclasses import dataclass
from typing import Any, final
import numpy as np
@@ -10,8 +11,8 @@ import pipmaster as pm
if not pm.is_installed("chromadb"):
pm.install("chromadb")
from chromadb import HttpClient, PersistentClient
from chromadb.config import Settings
from chromadb import HttpClient, PersistentClient # type: ignore
from chromadb.config import Settings # type: ignore
@final
@@ -335,3 +336,26 @@ class ChromaVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all documents from the ChromaDB collection.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
# Get all IDs in the collection
result = self._collection.get(include=[])
if result and result["ids"] and len(result["ids"]) > 0:
# Delete all documents
self._collection.delete(ids=result["ids"])
logger.info(f"Process {os.getpid()} drop ChromaDB collection {self.namespace}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping ChromaDB collection {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -429,3 +429,38 @@ class FaissVectorDBStorage(BaseVectorStorage):
results.append({**metadata, "id": metadata.get("__id__")})
return results
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will remove all vectors from the Faiss index and delete the storage files.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# Reset the index
self._index = faiss.IndexFlatIP(self._dim)
self._id_to_meta = {}
# Remove storage files if they exist
if os.path.exists(self._faiss_index_file):
os.remove(self._faiss_index_file)
if os.path.exists(self._meta_file):
os.remove(self._meta_file)
self._id_to_meta = {}
self._load_faiss_index()
# Notify other processes
await set_all_update_flags(self.namespace)
self.storage_updated.value = False
logger.info(f"Process {os.getpid()} drop FAISS index {self.namespace}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping FAISS index {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -129,9 +129,25 @@ class JsonDocStatusStorage(DocStatusStorage):
await set_all_update_flags(self.namespace)
await self.index_done_callback()
async def drop(self) -> None:
"""Drop the storage"""
async with self._storage_lock:
self._data.clear()
await set_all_update_flags(self.namespace)
await self.index_done_callback()
async def drop(self) -> dict[str, str]:
"""Drop all document status data from storage and clean up resources
This method will:
1. Clear all document status data from memory
2. Update flags to notify other processes
3. Trigger index_done_callback to save the empty state
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
self._data.update({})
await self.index_done_callback()
logger.info(f"Process {os.getpid()} drop {self.namespace}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -127,3 +127,26 @@ class JsonKVStorage(BaseKVStorage):
self._data.pop(doc_id, None)
await set_all_update_flags(self.namespace)
await self.index_done_callback()
async def drop(self) -> dict[str, str]:
"""Drop all data from storage and clean up resources
This method will:
1. Clear all data from memory
2. Update flags to notify other processes
3. Trigger index_done_callback to save the empty state
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
self._data.update({})
await self.index_done_callback()
logger.info(f"Process {os.getpid()} drop {self.namespace}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -15,7 +15,7 @@ if not pm.is_installed("pymilvus"):
pm.install("pymilvus")
import configparser
from pymilvus import MilvusClient
from pymilvus import MilvusClient # type: ignore
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
@@ -287,3 +287,31 @@ class MilvusVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all data from the Milvus collection.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
# Drop the collection and recreate it
if self._client.has_collection(self.namespace):
self._client.drop_collection(self.namespace)
# Recreate the collection
MilvusVectorDBStorage.create_collection_if_not_exist(
self._client,
self.namespace,
dimension=self.embedding_func.embedding_dim,
)
logger.info(f"Process {os.getpid()} drop Milvus collection {self.namespace}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping Milvus collection {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -280,3 +280,39 @@ class NanoVectorDBStorage(BaseVectorStorage):
client = await self._get_client()
return client.get(ids)
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will:
1. Remove the vector database storage file if it exists
2. Reinitialize the vector database client
3. Update flags to notify other processes
4. Trigger index_done_callback to save the empty state
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# delete _client_file_name
if os.path.exists(self._client_file_name):
os.remove(self._client_file_name)
self._client = NanoVectorDB(
self.embedding_func.embedding_dim,
storage_file=self._client_file_name,
)
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
logger.info(f"Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -1028,3 +1028,26 @@ class Neo4JStorage(BaseGraphStorage):
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
raise NotImplementedError
async def drop(self) -> dict[str, str]:
"""Drop all data from storage and clean up resources
This method will delete all nodes and relationships in the Neo4j database.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._driver.session(database=self._DATABASE) as session:
# Delete all nodes and relationships
query = "MATCH (n) DETACH DELETE n"
result = await session.run(query)
await result.consume() # Ensure result is fully consumed
logger.info(f"Process {os.getpid()} drop Neo4j database {self._DATABASE}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping Neo4j database {self._DATABASE}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -42,6 +42,7 @@ class NetworkXStorage(BaseGraphStorage):
)
nx.write_graphml(graph, file_name)
# TODOdeprecated, remove later
@staticmethod
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
@@ -424,3 +425,33 @@ class NetworkXStorage(BaseGraphStorage):
return False # Return error
return True
async def drop(self) -> dict[str, str]:
"""Drop all graph data from storage and clean up resources
This method will:
1. Remove the graph storage file if it exists
2. Reset the graph to an empty state
3. Update flags to notify other processes
4. Trigger index_done_callback to save the empty state
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# delete _client_file_name
if os.path.exists(self._graphml_xml_file):
os.remove(self._graphml_xml_file)
self._graph = nx.Graph()
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
logger.info(f"Process {os.getpid()} drop graph {self.namespace} (file:{self._graphml_xml_file})")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping graph {self.namespace}: {e}")
return {"status": "error", "message": str(e)}

View File

@@ -8,18 +8,15 @@ import uuid
from ..utils import logger
from ..base import BaseVectorStorage
import configparser
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
import pipmaster as pm
if not pm.is_installed("qdrant-client"):
pm.install("qdrant-client")
from qdrant_client import QdrantClient, models
from qdrant_client import QdrantClient, models # type: ignore
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
def compute_mdhash_id_for_qdrant(
content: str, prefix: str = "", style: str = "simple"
@@ -275,3 +272,89 @@ class QdrantVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error searching for prefix '{prefix}': {e}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Convert to Qdrant compatible ID
qdrant_id = compute_mdhash_id_for_qdrant(id)
# Retrieve the point by ID
result = self._client.retrieve(
collection_name=self.namespace,
ids=[qdrant_id],
with_payload=True,
)
if not result:
return None
return result[0].payload
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Convert to Qdrant compatible IDs
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
# Retrieve the points by IDs
results = self._client.retrieve(
collection_name=self.namespace,
ids=qdrant_ids,
with_payload=True,
)
return [point.payload for point in results]
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all data from the Qdrant collection.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
# Delete the collection and recreate it
if self._client.collection_exists(self.namespace):
self._client.delete_collection(self.namespace)
# Recreate the collection
QdrantVectorDBStorage.create_collection_if_not_exist(
self._client,
self.namespace,
vectors_config=models.VectorParams(
size=self.embedding_func.embedding_dim, distance=models.Distance.COSINE
),
)
logger.info(f"Process {os.getpid()} drop Qdrant collection {self.namespace}")
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping Qdrant collection {self.namespace}: {e}")
return {"status": "error", "message": str(e)}