Add drop funtions to storage implementations
This commit is contained in:
@@ -112,6 +112,31 @@ class StorageNameSpace(ABC):
|
||||
async def index_done_callback(self) -> None:
|
||||
"""Commit the storage operations after indexing"""
|
||||
|
||||
@abstractmethod
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
|
||||
This abstract method defines the contract for dropping all data from a storage implementation.
|
||||
Each storage type must implement this method to:
|
||||
1. Clear all data from memory and/or external storage
|
||||
2. Remove any associated storage files if applicable
|
||||
3. Reset the storage to its initial state
|
||||
4. Handle cleanup of any resources
|
||||
5. Notify other processes if necessary
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message with the following format:
|
||||
{
|
||||
"status": str, # "success" or "error"
|
||||
"message": str # "data dropped" on success, error details on failure
|
||||
}
|
||||
|
||||
Implementation specific:
|
||||
- On success: return {"status": "success", "message": "data dropped"}
|
||||
- On failure: return {"status": "error", "message": "<error details>"}
|
||||
- If not supported: return {"status": "error", "message": "unsupported"}
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseVectorStorage(StorageNameSpace, ABC):
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, final
|
||||
import numpy as np
|
||||
@@ -10,8 +11,8 @@ import pipmaster as pm
|
||||
if not pm.is_installed("chromadb"):
|
||||
pm.install("chromadb")
|
||||
|
||||
from chromadb import HttpClient, PersistentClient
|
||||
from chromadb.config import Settings
|
||||
from chromadb import HttpClient, PersistentClient # type: ignore
|
||||
from chromadb.config import Settings # type: ignore
|
||||
|
||||
|
||||
@final
|
||||
@@ -335,3 +336,26 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
This method will delete all documents from the ChromaDB collection.
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
# Get all IDs in the collection
|
||||
result = self._collection.get(include=[])
|
||||
if result and result["ids"] and len(result["ids"]) > 0:
|
||||
# Delete all documents
|
||||
self._collection.delete(ids=result["ids"])
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop ChromaDB collection {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping ChromaDB collection {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -429,3 +429,38 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
results.append({**metadata, "id": metadata.get("__id__")})
|
||||
|
||||
return results
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
This method will remove all vectors from the Faiss index and delete the storage files.
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
async with self._storage_lock:
|
||||
# Reset the index
|
||||
self._index = faiss.IndexFlatIP(self._dim)
|
||||
self._id_to_meta = {}
|
||||
|
||||
# Remove storage files if they exist
|
||||
if os.path.exists(self._faiss_index_file):
|
||||
os.remove(self._faiss_index_file)
|
||||
if os.path.exists(self._meta_file):
|
||||
os.remove(self._meta_file)
|
||||
|
||||
self._id_to_meta = {}
|
||||
self._load_faiss_index()
|
||||
|
||||
# Notify other processes
|
||||
await set_all_update_flags(self.namespace)
|
||||
self.storage_updated.value = False
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop FAISS index {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping FAISS index {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -129,9 +129,25 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
await set_all_update_flags(self.namespace)
|
||||
await self.index_done_callback()
|
||||
|
||||
async def drop(self) -> None:
|
||||
"""Drop the storage"""
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all document status data from storage and clean up resources
|
||||
|
||||
This method will:
|
||||
1. Clear all document status data from memory
|
||||
2. Update flags to notify other processes
|
||||
3. Trigger index_done_callback to save the empty state
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
async with self._storage_lock:
|
||||
self._data.clear()
|
||||
await set_all_update_flags(self.namespace)
|
||||
self._data.update({})
|
||||
await self.index_done_callback()
|
||||
logger.info(f"Process {os.getpid()} drop {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -127,3 +127,26 @@ class JsonKVStorage(BaseKVStorage):
|
||||
self._data.pop(doc_id, None)
|
||||
await set_all_update_flags(self.namespace)
|
||||
await self.index_done_callback()
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
|
||||
This method will:
|
||||
1. Clear all data from memory
|
||||
2. Update flags to notify other processes
|
||||
3. Trigger index_done_callback to save the empty state
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
async with self._storage_lock:
|
||||
self._data.update({})
|
||||
await self.index_done_callback()
|
||||
logger.info(f"Process {os.getpid()} drop {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -15,7 +15,7 @@ if not pm.is_installed("pymilvus"):
|
||||
pm.install("pymilvus")
|
||||
|
||||
import configparser
|
||||
from pymilvus import MilvusClient
|
||||
from pymilvus import MilvusClient # type: ignore
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
@@ -287,3 +287,31 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
This method will delete all data from the Milvus collection.
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
# Drop the collection and recreate it
|
||||
if self._client.has_collection(self.namespace):
|
||||
self._client.drop_collection(self.namespace)
|
||||
|
||||
# Recreate the collection
|
||||
MilvusVectorDBStorage.create_collection_if_not_exist(
|
||||
self._client,
|
||||
self.namespace,
|
||||
dimension=self.embedding_func.embedding_dim,
|
||||
)
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop Milvus collection {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping Milvus collection {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -280,3 +280,39 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
|
||||
client = await self._get_client()
|
||||
return client.get(ids)
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
This method will:
|
||||
1. Remove the vector database storage file if it exists
|
||||
2. Reinitialize the vector database client
|
||||
3. Update flags to notify other processes
|
||||
4. Trigger index_done_callback to save the empty state
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
async with self._storage_lock:
|
||||
# delete _client_file_name
|
||||
if os.path.exists(self._client_file_name):
|
||||
os.remove(self._client_file_name)
|
||||
|
||||
self._client = NanoVectorDB(
|
||||
self.embedding_func.embedding_dim,
|
||||
storage_file=self._client_file_name,
|
||||
)
|
||||
|
||||
# Notify other processes that data has been updated
|
||||
await set_all_update_flags(self.namespace)
|
||||
# Reset own update flag to avoid self-reloading
|
||||
self.storage_updated.value = False
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -1028,3 +1028,26 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
|
||||
This method will delete all nodes and relationships in the Neo4j database.
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
# Delete all nodes and relationships
|
||||
query = "MATCH (n) DETACH DELETE n"
|
||||
result = await session.run(query)
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop Neo4j database {self._DATABASE}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping Neo4j database {self._DATABASE}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -42,6 +42,7 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
)
|
||||
nx.write_graphml(graph, file_name)
|
||||
|
||||
# TODO:deprecated, remove later
|
||||
@staticmethod
|
||||
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
|
||||
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
|
||||
@@ -424,3 +425,33 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
return False # Return error
|
||||
|
||||
return True
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all graph data from storage and clean up resources
|
||||
|
||||
This method will:
|
||||
1. Remove the graph storage file if it exists
|
||||
2. Reset the graph to an empty state
|
||||
3. Update flags to notify other processes
|
||||
4. Trigger index_done_callback to save the empty state
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
async with self._storage_lock:
|
||||
# delete _client_file_name
|
||||
if os.path.exists(self._graphml_xml_file):
|
||||
os.remove(self._graphml_xml_file)
|
||||
self._graph = nx.Graph()
|
||||
# Notify other processes that data has been updated
|
||||
await set_all_update_flags(self.namespace)
|
||||
# Reset own update flag to avoid self-reloading
|
||||
self.storage_updated.value = False
|
||||
logger.info(f"Process {os.getpid()} drop graph {self.namespace} (file:{self._graphml_xml_file})")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping graph {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -8,18 +8,15 @@ import uuid
|
||||
from ..utils import logger
|
||||
from ..base import BaseVectorStorage
|
||||
import configparser
|
||||
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
import pipmaster as pm
|
||||
|
||||
if not pm.is_installed("qdrant-client"):
|
||||
pm.install("qdrant-client")
|
||||
|
||||
from qdrant_client import QdrantClient, models
|
||||
from qdrant_client import QdrantClient, models # type: ignore
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
def compute_mdhash_id_for_qdrant(
|
||||
content: str, prefix: str = "", style: str = "simple"
|
||||
@@ -275,3 +272,89 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching for prefix '{prefix}': {e}")
|
||||
return []
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
"""Get vector data by its ID
|
||||
|
||||
Args:
|
||||
id: The unique identifier of the vector
|
||||
|
||||
Returns:
|
||||
The vector data if found, or None if not found
|
||||
"""
|
||||
try:
|
||||
# Convert to Qdrant compatible ID
|
||||
qdrant_id = compute_mdhash_id_for_qdrant(id)
|
||||
|
||||
# Retrieve the point by ID
|
||||
result = self._client.retrieve(
|
||||
collection_name=self.namespace,
|
||||
ids=[qdrant_id],
|
||||
with_payload=True,
|
||||
)
|
||||
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return result[0].payload
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for ID {id}: {e}")
|
||||
return None
|
||||
|
||||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||||
"""Get multiple vector data by their IDs
|
||||
|
||||
Args:
|
||||
ids: List of unique identifiers
|
||||
|
||||
Returns:
|
||||
List of vector data objects that were found
|
||||
"""
|
||||
if not ids:
|
||||
return []
|
||||
|
||||
try:
|
||||
# Convert to Qdrant compatible IDs
|
||||
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
||||
|
||||
# Retrieve the points by IDs
|
||||
results = self._client.retrieve(
|
||||
collection_name=self.namespace,
|
||||
ids=qdrant_ids,
|
||||
with_payload=True,
|
||||
)
|
||||
|
||||
return [point.payload for point in results]
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
This method will delete all data from the Qdrant collection.
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
"""
|
||||
try:
|
||||
# Delete the collection and recreate it
|
||||
if self._client.collection_exists(self.namespace):
|
||||
self._client.delete_collection(self.namespace)
|
||||
|
||||
# Recreate the collection
|
||||
QdrantVectorDBStorage.create_collection_if_not_exist(
|
||||
self._client,
|
||||
self.namespace,
|
||||
vectors_config=models.VectorParams(
|
||||
size=self.embedding_func.embedding_dim, distance=models.Distance.COSINE
|
||||
),
|
||||
)
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop Qdrant collection {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping Qdrant collection {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
Reference in New Issue
Block a user