Merge pull request #791 from ArnoChenFx/refactor-server
Refactor File Indexing for Background Asynchronous Processing
This commit is contained in:
@@ -3,7 +3,6 @@ from fastapi import (
|
||||
HTTPException,
|
||||
File,
|
||||
UploadFile,
|
||||
Form,
|
||||
BackgroundTasks,
|
||||
)
|
||||
import asyncio
|
||||
@@ -14,7 +13,7 @@ import re
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
import logging
|
||||
import argparse
|
||||
from typing import List, Any, Optional, Union, Dict
|
||||
from typing import List, Any, Optional, Dict
|
||||
from pydantic import BaseModel
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
@@ -34,6 +33,9 @@ from starlette.status import HTTP_403_FORBIDDEN
|
||||
import pipmaster as pm
|
||||
from dotenv import load_dotenv
|
||||
import configparser
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
|
||||
from lightrag.utils import logger
|
||||
from .ollama_api import (
|
||||
OllamaAPI,
|
||||
@@ -635,9 +637,47 @@ class SearchMode(str, Enum):
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
|
||||
"""Specifies the retrieval mode"""
|
||||
mode: SearchMode = SearchMode.hybrid
|
||||
stream: bool = False
|
||||
only_need_context: bool = False
|
||||
|
||||
"""If True, enables streaming output for real-time responses."""
|
||||
stream: Optional[bool] = None
|
||||
|
||||
"""If True, only returns the retrieved context without generating a response."""
|
||||
only_need_context: Optional[bool] = None
|
||||
|
||||
"""If True, only returns the generated prompt without producing a response."""
|
||||
only_need_prompt: Optional[bool] = None
|
||||
|
||||
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
|
||||
response_type: Optional[str] = None
|
||||
|
||||
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
|
||||
top_k: Optional[int] = None
|
||||
|
||||
"""Maximum number of tokens allowed for each retrieved text chunk."""
|
||||
max_token_for_text_unit: Optional[int] = None
|
||||
|
||||
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
|
||||
max_token_for_global_context: Optional[int] = None
|
||||
|
||||
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
|
||||
max_token_for_local_context: Optional[int] = None
|
||||
|
||||
"""List of high-level keywords to prioritize in retrieval."""
|
||||
hl_keywords: Optional[List[str]] = None
|
||||
|
||||
"""List of low-level keywords to refine retrieval focus."""
|
||||
ll_keywords: Optional[List[str]] = None
|
||||
|
||||
"""Stores past conversation history to maintain context.
|
||||
Format: [{"role": "user/assistant", "content": "message"}].
|
||||
"""
|
||||
conversation_history: Optional[List[dict[str, Any]]] = None
|
||||
|
||||
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
||||
history_turns: Optional[int] = None
|
||||
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
@@ -646,13 +686,38 @@ class QueryResponse(BaseModel):
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
class InsertResponse(BaseModel):
|
||||
status: str
|
||||
message: str
|
||||
document_count: int
|
||||
|
||||
|
||||
def QueryRequestToQueryParams(request: QueryRequest):
|
||||
param = QueryParam(mode=request.mode, stream=request.stream)
|
||||
if request.only_need_context is not None:
|
||||
param.only_need_context = request.only_need_context
|
||||
if request.only_need_prompt is not None:
|
||||
param.only_need_prompt = request.only_need_prompt
|
||||
if request.response_type is not None:
|
||||
param.response_type = request.response_type
|
||||
if request.top_k is not None:
|
||||
param.top_k = request.top_k
|
||||
if request.max_token_for_text_unit is not None:
|
||||
param.max_token_for_text_unit = request.max_token_for_text_unit
|
||||
if request.max_token_for_global_context is not None:
|
||||
param.max_token_for_global_context = request.max_token_for_global_context
|
||||
if request.max_token_for_local_context is not None:
|
||||
param.max_token_for_local_context = request.max_token_for_local_context
|
||||
if request.hl_keywords is not None:
|
||||
param.hl_keywords = request.hl_keywords
|
||||
if request.ll_keywords is not None:
|
||||
param.ll_keywords = request.ll_keywords
|
||||
if request.conversation_history is not None:
|
||||
param.conversation_history = request.conversation_history
|
||||
if request.history_turns is not None:
|
||||
param.history_turns = request.history_turns
|
||||
return param
|
||||
|
||||
|
||||
def get_api_key_dependency(api_key: Optional[str]):
|
||||
@@ -666,7 +731,9 @@ def get_api_key_dependency(api_key: Optional[str]):
|
||||
# If API key is configured, use proper authentication
|
||||
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
||||
|
||||
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
|
||||
async def api_key_auth(
|
||||
api_key_header_value: Optional[str] = Security(api_key_header),
|
||||
):
|
||||
if not api_key_header_value:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
||||
@@ -682,6 +749,7 @@ def get_api_key_dependency(api_key: Optional[str]):
|
||||
|
||||
# Global configuration
|
||||
global_top_k = 60 # default value
|
||||
temp_prefix = "__tmp_" # prefix for temporary files
|
||||
|
||||
|
||||
def create_app(args):
|
||||
@@ -1132,61 +1200,194 @@ def create_app(args):
|
||||
("llm_response_cache", rag.llm_response_cache),
|
||||
]
|
||||
|
||||
async def index_file(file_path: Union[str, Path]) -> None:
|
||||
"""Index all files inside the folder with support for multiple file formats
|
||||
async def pipeline_enqueue_file(file_path: Path) -> bool:
|
||||
"""Add a file to the queue for processing
|
||||
|
||||
Args:
|
||||
file_path: Path to the file to be indexed (str or Path object)
|
||||
|
||||
Raises:
|
||||
ValueError: If file format is not supported
|
||||
FileNotFoundError: If file doesn't exist
|
||||
file_path: Path to the saved file
|
||||
Returns:
|
||||
bool: True if the file was successfully enqueued, False otherwise
|
||||
"""
|
||||
if not pm.is_installed("aiofiles"):
|
||||
pm.install("aiofiles")
|
||||
|
||||
# Convert to Path object if string
|
||||
file_path = Path(file_path)
|
||||
|
||||
# Check if file exists
|
||||
if not file_path.exists():
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
try:
|
||||
content = ""
|
||||
# Get file extension in lowercase
|
||||
ext = file_path.suffix.lower()
|
||||
|
||||
file = None
|
||||
async with aiofiles.open(file_path, "rb") as f:
|
||||
file = await f.read()
|
||||
|
||||
# Process based on file type
|
||||
match ext:
|
||||
case ".txt" | ".md":
|
||||
# Text files handling
|
||||
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
||||
content = await f.read()
|
||||
content = file.decode("utf-8")
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader
|
||||
from io import BytesIO
|
||||
|
||||
case ".pdf" | ".docx" | ".pptx" | ".xlsx":
|
||||
if not pm.is_installed("docling"):
|
||||
pm.install("docling")
|
||||
from docling.document_converter import DocumentConverter
|
||||
pdf_file = BytesIO(file)
|
||||
reader = PdfReader(pdf_file)
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from io import BytesIO
|
||||
|
||||
async def convert_doc():
|
||||
def sync_convert():
|
||||
converter = DocumentConverter()
|
||||
result = converter.convert(file_path)
|
||||
return result.document.export_to_markdown()
|
||||
|
||||
return await asyncio.to_thread(sync_convert)
|
||||
|
||||
content = await convert_doc()
|
||||
docx_content = await file.read()
|
||||
docx_file = BytesIO(docx_content)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join(
|
||||
[paragraph.text for paragraph in doc.paragraphs]
|
||||
)
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pptx_content = await file.read()
|
||||
pptx_file = BytesIO(pptx_content)
|
||||
prs = Presentation(pptx_file)
|
||||
for slide in prs.slides:
|
||||
for shape in slide.shapes:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case _:
|
||||
raise ValueError(f"Unsupported file format: {ext}")
|
||||
logging.error(
|
||||
f"Unsupported file type: {file_path.name} (extension {ext})"
|
||||
)
|
||||
return False
|
||||
|
||||
# Insert content into RAG system
|
||||
# Insert into the RAG queue
|
||||
if content:
|
||||
await rag.ainsert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
logging.info(f"Successfully indexed file: {file_path}")
|
||||
await rag.apipeline_enqueue_documents(content)
|
||||
logging.info(
|
||||
f"Successfully processed and enqueued file: {file_path.name}"
|
||||
)
|
||||
return True
|
||||
else:
|
||||
logging.warning(f"No content extracted from file: {file_path}")
|
||||
logging.error(
|
||||
f"No content could be extracted from file: {file_path.name}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(
|
||||
f"Error processing or enqueueing file {file_path.name}: {str(e)}"
|
||||
)
|
||||
logging.error(traceback.format_exc())
|
||||
finally:
|
||||
if file_path.name.startswith(temp_prefix):
|
||||
# Clean up the temporary file after indexing
|
||||
try:
|
||||
file_path.unlink()
|
||||
except Exception as e:
|
||||
logging.error(f"Error deleting file {file_path}: {str(e)}")
|
||||
return False
|
||||
|
||||
async def pipeline_index_file(file_path: Path):
|
||||
"""Index a file
|
||||
|
||||
Args:
|
||||
file_path: Path to the saved file
|
||||
"""
|
||||
try:
|
||||
if await pipeline_enqueue_file(file_path):
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path.name}: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
|
||||
async def pipeline_index_files(file_paths: List[Path]):
|
||||
"""Index multiple files concurrently
|
||||
|
||||
Args:
|
||||
file_paths: Paths to the files to index
|
||||
"""
|
||||
if not file_paths:
|
||||
return
|
||||
try:
|
||||
enqueued = False
|
||||
|
||||
if len(file_paths) == 1:
|
||||
enqueued = await pipeline_enqueue_file(file_paths[0])
|
||||
else:
|
||||
tasks = [pipeline_enqueue_file(path) for path in file_paths]
|
||||
enqueued = any(await asyncio.gather(*tasks))
|
||||
|
||||
if enqueued:
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing files: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
|
||||
async def pipeline_index_texts(texts: List[str]):
|
||||
"""Index a list of texts
|
||||
|
||||
Args:
|
||||
texts: The texts to index
|
||||
"""
|
||||
if not texts:
|
||||
return
|
||||
await rag.apipeline_enqueue_documents(texts)
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
|
||||
async def save_temp_file(file: UploadFile = File(...)) -> Path:
|
||||
"""Save the uploaded file to a temporary location
|
||||
|
||||
Args:
|
||||
file: The uploaded file
|
||||
|
||||
Returns:
|
||||
Path: The path to the saved file
|
||||
"""
|
||||
# Generate unique filename to avoid conflicts
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
unique_filename = f"{temp_prefix}{timestamp}_{file.filename}"
|
||||
|
||||
# Create a temporary file to save the uploaded content
|
||||
temp_path = doc_manager.input_dir / "temp" / unique_filename
|
||||
temp_path.parent.mkdir(exist_ok=True)
|
||||
|
||||
# Save the file
|
||||
with open(temp_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
return temp_path
|
||||
|
||||
async def run_scanning_process():
|
||||
"""Background task to scan and index documents"""
|
||||
global scan_progress
|
||||
|
||||
try:
|
||||
new_files = doc_manager.scan_directory_for_new_files()
|
||||
scan_progress["total_files"] = len(new_files)
|
||||
|
||||
logger.info(f"Found {len(new_files)} new files to index.")
|
||||
for file_path in new_files:
|
||||
try:
|
||||
with progress_lock:
|
||||
scan_progress["current_file"] = os.path.basename(file_path)
|
||||
|
||||
await pipeline_index_file(file_path)
|
||||
|
||||
with progress_lock:
|
||||
scan_progress["indexed_count"] += 1
|
||||
scan_progress["progress"] = (
|
||||
scan_progress["indexed_count"]
|
||||
/ scan_progress["total_files"]
|
||||
) * 100
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during scanning process: {str(e)}")
|
||||
finally:
|
||||
with progress_lock:
|
||||
scan_progress["is_scanning"] = False
|
||||
|
||||
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
|
||||
async def scan_for_new_documents(background_tasks: BackgroundTasks):
|
||||
@@ -1206,38 +1407,6 @@ def create_app(args):
|
||||
|
||||
return {"status": "scanning_started"}
|
||||
|
||||
async def run_scanning_process():
|
||||
"""Background task to scan and index documents"""
|
||||
global scan_progress
|
||||
|
||||
try:
|
||||
new_files = doc_manager.scan_directory_for_new_files()
|
||||
scan_progress["total_files"] = len(new_files)
|
||||
|
||||
logger.info(f"Found {len(new_files)} new files to index.")
|
||||
for file_path in new_files:
|
||||
try:
|
||||
with progress_lock:
|
||||
scan_progress["current_file"] = os.path.basename(file_path)
|
||||
|
||||
await index_file(file_path)
|
||||
|
||||
with progress_lock:
|
||||
scan_progress["indexed_count"] += 1
|
||||
scan_progress["progress"] = (
|
||||
scan_progress["indexed_count"]
|
||||
/ scan_progress["total_files"]
|
||||
) * 100
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during scanning process: {str(e)}")
|
||||
finally:
|
||||
with progress_lock:
|
||||
scan_progress["is_scanning"] = False
|
||||
|
||||
@app.get("/documents/scan-progress")
|
||||
async def get_scan_progress():
|
||||
"""Get the current scanning progress"""
|
||||
@@ -1245,7 +1414,9 @@ def create_app(args):
|
||||
return scan_progress
|
||||
|
||||
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
|
||||
async def upload_to_input_dir(file: UploadFile = File(...)):
|
||||
async def upload_to_input_dir(
|
||||
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
||||
):
|
||||
"""
|
||||
Endpoint for uploading a file to the input directory and indexing it.
|
||||
|
||||
@@ -1254,6 +1425,7 @@ def create_app(args):
|
||||
indexes it for retrieval, and returns a success status with relevant details.
|
||||
|
||||
Parameters:
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
|
||||
`doc_manager.supported_extensions`.
|
||||
|
||||
@@ -1278,15 +1450,175 @@ def create_app(args):
|
||||
with open(file_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
# Immediately index the uploaded file
|
||||
await index_file(file_path)
|
||||
# Add to background tasks
|
||||
background_tasks.add_task(pipeline_index_file, file_path)
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"File uploaded and indexed: {file.filename}",
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' uploaded successfully. Processing will continue in background.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
"/documents/text",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def insert_text(
|
||||
request: InsertTextRequest, background_tasks: BackgroundTasks
|
||||
):
|
||||
"""
|
||||
Insert text into the Retrieval-Augmented Generation (RAG) system.
|
||||
|
||||
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
|
||||
|
||||
Args:
|
||||
request (InsertTextRequest): The request body containing the text to be inserted.
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
||||
"""
|
||||
try:
|
||||
background_tasks.add_task(pipeline_index_texts, [request.text])
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully received. Processing will continue in background.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/text: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
"/documents/file",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def insert_file(
|
||||
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
||||
):
|
||||
"""Insert a file directly into the RAG system
|
||||
|
||||
Args:
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
file: Uploaded file
|
||||
|
||||
Returns:
|
||||
InsertResponse: Status of the insertion operation
|
||||
|
||||
Raises:
|
||||
HTTPException: For unsupported file types or processing errors
|
||||
"""
|
||||
try:
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||
)
|
||||
|
||||
# Create a temporary file to save the uploaded content
|
||||
temp_path = save_temp_file(file)
|
||||
|
||||
# Add to background tasks
|
||||
background_tasks.add_task(pipeline_index_file, temp_path)
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' saved successfully. Processing will continue in background.",
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/file: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
"/documents/batch",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def insert_batch(
|
||||
background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)
|
||||
):
|
||||
"""Process multiple files in batch mode
|
||||
|
||||
Args:
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
files: List of files to process
|
||||
|
||||
Returns:
|
||||
InsertResponse: Status of the batch insertion operation
|
||||
|
||||
Raises:
|
||||
HTTPException: For processing errors
|
||||
"""
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
temp_files = []
|
||||
|
||||
for file in files:
|
||||
if doc_manager.is_supported_file(file.filename):
|
||||
# Create a temporary file to save the uploaded content
|
||||
temp_files.append(save_temp_file(file))
|
||||
inserted_count += 1
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
|
||||
if temp_files:
|
||||
background_tasks.add_task(pipeline_index_files, temp_files)
|
||||
|
||||
# Prepare status message
|
||||
if inserted_count == len(files):
|
||||
status = "success"
|
||||
status_message = f"Successfully inserted all {inserted_count} documents"
|
||||
elif inserted_count > 0:
|
||||
status = "partial_success"
|
||||
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
else:
|
||||
status = "failure"
|
||||
status_message = "No documents were successfully inserted"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
return InsertResponse(status=status, message=status_message)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/batch: {file.filename}: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.delete(
|
||||
"/documents",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def clear_documents():
|
||||
"""
|
||||
Clear all documents from the LightRAG system.
|
||||
|
||||
This endpoint deletes all text chunks, entities vector database, and relationships vector database,
|
||||
effectively clearing all documents from the LightRAG system.
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status, message, and the new document count (0 in this case).
|
||||
"""
|
||||
try:
|
||||
rag.text_chunks = []
|
||||
rag.entities_vdb = None
|
||||
rag.relationships_vdb = None
|
||||
return InsertResponse(
|
||||
status="success", message="All documents cleared successfully"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error DELETE /documents: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
@@ -1297,12 +1629,7 @@ def create_app(args):
|
||||
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
||||
|
||||
Parameters:
|
||||
request (QueryRequest): A Pydantic model containing the following fields:
|
||||
- query (str): The text of the user's query.
|
||||
- mode (ModeEnum): Optional. Specifies the mode of retrieval augmentation.
|
||||
- stream (bool): Optional. Determines if the response should be streamed.
|
||||
- only_need_context (bool): Optional. If true, returns only the context without further processing.
|
||||
|
||||
request (QueryRequest): The request object containing the query parameters.
|
||||
Returns:
|
||||
QueryResponse: A Pydantic model containing the result of the query processing.
|
||||
If a string is returned (e.g., cache hit), it's directly returned.
|
||||
@@ -1314,13 +1641,7 @@ def create_app(args):
|
||||
"""
|
||||
try:
|
||||
response = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode,
|
||||
stream=request.stream,
|
||||
only_need_context=request.only_need_context,
|
||||
top_k=global_top_k,
|
||||
),
|
||||
request.query, param=QueryRequestToQueryParams(request)
|
||||
)
|
||||
|
||||
# If response is a string (e.g. cache hit), return directly
|
||||
@@ -1328,16 +1649,16 @@ def create_app(args):
|
||||
return QueryResponse(response=response)
|
||||
|
||||
# If it's an async generator, decide whether to stream based on stream parameter
|
||||
if request.stream:
|
||||
if request.stream or hasattr(response, "__aiter__"):
|
||||
result = ""
|
||||
async for chunk in response:
|
||||
result += chunk
|
||||
return QueryResponse(response=result)
|
||||
elif isinstance(response, dict):
|
||||
result = json.dumps(response, indent=2)
|
||||
return QueryResponse(response=result)
|
||||
else:
|
||||
result = ""
|
||||
async for chunk in response:
|
||||
result += chunk
|
||||
return QueryResponse(response=result)
|
||||
return QueryResponse(response=str(response))
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -1355,14 +1676,11 @@ def create_app(args):
|
||||
StreamingResponse: A streaming response containing the RAG query results.
|
||||
"""
|
||||
try:
|
||||
params = QueryRequestToQueryParams(request)
|
||||
|
||||
params.stream = True
|
||||
response = await rag.aquery( # Use aquery instead of query, and add await
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode,
|
||||
stream=True,
|
||||
only_need_context=request.only_need_context,
|
||||
top_k=global_top_k,
|
||||
),
|
||||
request.query, param=params
|
||||
)
|
||||
|
||||
from fastapi.responses import StreamingResponse
|
||||
@@ -1395,255 +1713,6 @@ def create_app(args):
|
||||
trace_exception(e)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
"/documents/text",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def insert_text(request: InsertTextRequest):
|
||||
"""
|
||||
Insert text into the Retrieval-Augmented Generation (RAG) system.
|
||||
|
||||
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
|
||||
|
||||
Args:
|
||||
request (InsertTextRequest): The request body containing the text to be inserted.
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
||||
"""
|
||||
try:
|
||||
await rag.ainsert(request.text)
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully inserted",
|
||||
document_count=1,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
"/documents/file",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
||||
"""Insert a file directly into the RAG system
|
||||
|
||||
Args:
|
||||
file: Uploaded file
|
||||
description: Optional description of the file
|
||||
|
||||
Returns:
|
||||
InsertResponse: Status of the insertion operation
|
||||
|
||||
Raises:
|
||||
HTTPException: For unsupported file types or processing errors
|
||||
"""
|
||||
try:
|
||||
content = ""
|
||||
# Get file extension in lowercase
|
||||
ext = Path(file.filename).suffix.lower()
|
||||
|
||||
match ext:
|
||||
case ".txt" | ".md":
|
||||
# Text files handling
|
||||
text_content = await file.read()
|
||||
content = text_content.decode("utf-8")
|
||||
|
||||
case ".pdf" | ".docx" | ".pptx" | ".xlsx":
|
||||
if not pm.is_installed("docling"):
|
||||
pm.install("docling")
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
||||
# Create a temporary file to save the uploaded content
|
||||
temp_path = Path("temp") / file.filename
|
||||
temp_path.parent.mkdir(exist_ok=True)
|
||||
|
||||
# Save the uploaded file
|
||||
with temp_path.open("wb") as f:
|
||||
f.write(await file.read())
|
||||
|
||||
try:
|
||||
|
||||
async def convert_doc():
|
||||
def sync_convert():
|
||||
converter = DocumentConverter()
|
||||
result = converter.convert(str(temp_path))
|
||||
return result.document.export_to_markdown()
|
||||
|
||||
return await asyncio.to_thread(sync_convert)
|
||||
|
||||
content = await convert_doc()
|
||||
finally:
|
||||
# Clean up the temporary file
|
||||
temp_path.unlink()
|
||||
|
||||
# Insert content into RAG system
|
||||
if content:
|
||||
# Add description if provided
|
||||
if description:
|
||||
content = f"{description}\n\n{content}"
|
||||
|
||||
await rag.ainsert(content)
|
||||
logging.info(f"Successfully indexed file: {file.filename}")
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' successfully inserted",
|
||||
document_count=1,
|
||||
)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="No content could be extracted from the file",
|
||||
)
|
||||
|
||||
except UnicodeDecodeError:
|
||||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||||
except Exception as e:
|
||||
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post(
|
||||
"/documents/batch",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def insert_batch(files: List[UploadFile] = File(...)):
|
||||
"""Process multiple files in batch mode
|
||||
|
||||
Args:
|
||||
files: List of files to process
|
||||
|
||||
Returns:
|
||||
InsertResponse: Status of the batch insertion operation
|
||||
|
||||
Raises:
|
||||
HTTPException: For processing errors
|
||||
"""
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
|
||||
for file in files:
|
||||
try:
|
||||
content = ""
|
||||
ext = Path(file.filename).suffix.lower()
|
||||
|
||||
match ext:
|
||||
case ".txt" | ".md":
|
||||
text_content = await file.read()
|
||||
content = text_content.decode("utf-8")
|
||||
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader
|
||||
from io import BytesIO
|
||||
|
||||
pdf_content = await file.read()
|
||||
pdf_file = BytesIO(pdf_content)
|
||||
reader = PdfReader(pdf_file)
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from io import BytesIO
|
||||
|
||||
docx_content = await file.read()
|
||||
docx_file = BytesIO(docx_content)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join(
|
||||
[paragraph.text for paragraph in doc.paragraphs]
|
||||
)
|
||||
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pptx_content = await file.read()
|
||||
pptx_file = BytesIO(pptx_content)
|
||||
prs = Presentation(pptx_file)
|
||||
for slide in prs.slides:
|
||||
for shape in slide.shapes:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
|
||||
case _:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
continue
|
||||
|
||||
if content:
|
||||
await rag.ainsert(content)
|
||||
inserted_count += 1
|
||||
logging.info(f"Successfully indexed file: {file.filename}")
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (no content extracted)")
|
||||
|
||||
except UnicodeDecodeError:
|
||||
failed_files.append(f"{file.filename} (encoding error)")
|
||||
except Exception as e:
|
||||
failed_files.append(f"{file.filename} ({str(e)})")
|
||||
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
||||
|
||||
# Prepare status message
|
||||
if inserted_count == len(files):
|
||||
status = "success"
|
||||
status_message = f"Successfully inserted all {inserted_count} documents"
|
||||
elif inserted_count > 0:
|
||||
status = "partial_success"
|
||||
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
else:
|
||||
status = "failure"
|
||||
status_message = "No documents were successfully inserted"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
return InsertResponse(
|
||||
status=status,
|
||||
message=status_message,
|
||||
document_count=inserted_count,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Batch processing error: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.delete(
|
||||
"/documents",
|
||||
response_model=InsertResponse,
|
||||
dependencies=[Depends(optional_api_key)],
|
||||
)
|
||||
async def clear_documents():
|
||||
"""
|
||||
Clear all documents from the LightRAG system.
|
||||
|
||||
This endpoint deletes all text chunks, entities vector database, and relationships vector database,
|
||||
effectively clearing all documents from the LightRAG system.
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status, message, and the new document count (0 in this case).
|
||||
"""
|
||||
try:
|
||||
rag.text_chunks = []
|
||||
rag.entities_vdb = None
|
||||
rag.relationships_vdb = None
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="All documents cleared successfully",
|
||||
document_count=0,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
# query all graph labels
|
||||
@app.get("/graph/label/list")
|
||||
async def get_graph_labels():
|
||||
|
@@ -249,20 +249,10 @@ class DocStatusStorage(BaseKVStorage):
|
||||
"""Get counts of documents in each status"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all failed documents"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all pending documents"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processing documents"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all procesed documents"""
|
||||
async def get_docs_by_status(
|
||||
self, status: DocStatus
|
||||
) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all documents with a specific status"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def update_doc_status(self, data: dict[str, Any]) -> None:
|
||||
|
@@ -93,36 +93,14 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
counts[doc["status"]] += 1
|
||||
return counts
|
||||
|
||||
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all failed documents"""
|
||||
async def get_docs_by_status(
|
||||
self, status: DocStatus
|
||||
) -> dict[str, DocProcessingStatus]:
|
||||
"""all documents with a specific status"""
|
||||
return {
|
||||
k: DocProcessingStatus(**v)
|
||||
for k, v in self._data.items()
|
||||
if v["status"] == DocStatus.FAILED
|
||||
}
|
||||
|
||||
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all pending documents"""
|
||||
return {
|
||||
k: DocProcessingStatus(**v)
|
||||
for k, v in self._data.items()
|
||||
if v["status"] == DocStatus.PENDING
|
||||
}
|
||||
|
||||
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processed documents"""
|
||||
return {
|
||||
k: DocProcessingStatus(**v)
|
||||
for k, v in self._data.items()
|
||||
if v["status"] == DocStatus.PROCESSED
|
||||
}
|
||||
|
||||
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processing documents"""
|
||||
return {
|
||||
k: DocProcessingStatus(**v)
|
||||
for k, v in self._data.items()
|
||||
if v["status"] == DocStatus.PROCESSING
|
||||
if v["status"] == status
|
||||
}
|
||||
|
||||
async def index_done_callback(self):
|
||||
|
@@ -175,7 +175,7 @@ class MongoDocStatusStorage(DocStatusStorage):
|
||||
async def get_docs_by_status(
|
||||
self, status: DocStatus
|
||||
) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all documents by status"""
|
||||
"""Get all documents with a specific status"""
|
||||
cursor = self._data.find({"status": status.value})
|
||||
result = await cursor.to_list()
|
||||
return {
|
||||
@@ -191,22 +191,6 @@ class MongoDocStatusStorage(DocStatusStorage):
|
||||
for doc in result
|
||||
}
|
||||
|
||||
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all failed documents"""
|
||||
return await self.get_docs_by_status(DocStatus.FAILED)
|
||||
|
||||
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all pending documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PENDING)
|
||||
|
||||
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processing documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PROCESSING)
|
||||
|
||||
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all procesed documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PROCESSED)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MongoGraphStorage(BaseGraphStorage):
|
||||
|
@@ -468,7 +468,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
||||
async def get_docs_by_status(
|
||||
self, status: DocStatus
|
||||
) -> Dict[str, DocProcessingStatus]:
|
||||
"""Get all documents by status"""
|
||||
"""all documents with a specific status"""
|
||||
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
|
||||
params = {"workspace": self.db.workspace, "status": status}
|
||||
result = await self.db.query(sql, params, True)
|
||||
@@ -485,22 +485,6 @@ class PGDocStatusStorage(DocStatusStorage):
|
||||
for element in result
|
||||
}
|
||||
|
||||
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
|
||||
"""Get all failed documents"""
|
||||
return await self.get_docs_by_status(DocStatus.FAILED)
|
||||
|
||||
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
|
||||
"""Get all pending documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PENDING)
|
||||
|
||||
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processing documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PROCESSING)
|
||||
|
||||
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all procesed documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PROCESSED)
|
||||
|
||||
async def index_done_callback(self):
|
||||
"""Save data after indexing, but for PostgreSQL, we already saved them during the upsert stage, so no action to take here"""
|
||||
logger.info("Doc status had been saved into postgresql db!")
|
||||
|
@@ -89,7 +89,7 @@ STORAGE_IMPLEMENTATIONS = {
|
||||
"PGDocStatusStorage",
|
||||
"MongoDocStatusStorage",
|
||||
],
|
||||
"required_methods": ["get_pending_docs"],
|
||||
"required_methods": ["get_docs_by_status"],
|
||||
},
|
||||
}
|
||||
|
||||
@@ -230,7 +230,7 @@ class LightRAG:
|
||||
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
||||
|
||||
working_dir: str = field(
|
||||
default_factory=lambda: f'./lightrag_cache_{datetime.now().strftime("%Y-%m-%d-%H:%M:%S")}'
|
||||
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
||||
)
|
||||
"""Directory where cache and temporary files are stored."""
|
||||
|
||||
@@ -715,11 +715,11 @@ class LightRAG:
|
||||
# 1. Get all pending, failed, and abnormally terminated processing documents.
|
||||
to_process_docs: dict[str, DocProcessingStatus] = {}
|
||||
|
||||
processing_docs = await self.doc_status.get_processing_docs()
|
||||
processing_docs = await self.doc_status.get_docs_by_status(DocStatus.PROCESSING)
|
||||
to_process_docs.update(processing_docs)
|
||||
failed_docs = await self.doc_status.get_failed_docs()
|
||||
failed_docs = await self.doc_status.get_docs_by_status(DocStatus.FAILED)
|
||||
to_process_docs.update(failed_docs)
|
||||
pendings_docs = await self.doc_status.get_pending_docs()
|
||||
pendings_docs = await self.doc_status.get_docs_by_status(DocStatus.PENDING)
|
||||
to_process_docs.update(pendings_docs)
|
||||
|
||||
if not to_process_docs:
|
||||
|
Reference in New Issue
Block a user