Logic Optimization
This commit is contained in:
@@ -1,16 +1,14 @@
|
||||
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from fastapi import Query
|
||||
from contextlib import asynccontextmanager
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional,Any
|
||||
from fastapi.responses import JSONResponse
|
||||
from typing import Optional, Any
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
|
||||
import sys, os
|
||||
print(os.getcwd())
|
||||
from pathlib import Path
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
sys.path.append(os.path.abspath(script_directory))
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
@@ -18,10 +16,12 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
|
||||
print(os.getcwd())
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
sys.path.append(os.path.abspath(script_directory))
|
||||
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
@@ -47,7 +47,8 @@ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -77,10 +78,10 @@ async def get_embedding_dim():
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
|
||||
async def init():
|
||||
|
||||
# Detect embedding dimension
|
||||
embedding_dimension = 1024 #await get_embedding_dim()
|
||||
embedding_dimension = 1024 # await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
# Create Oracle DB connection
|
||||
# The `config` parameter is the connection configuration of Oracle DB
|
||||
@@ -88,36 +89,36 @@ async def init():
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
|
||||
oracle_db = OracleDB(
|
||||
config={
|
||||
"user": "",
|
||||
"password": "",
|
||||
"dsn": "",
|
||||
"config_dir": "path_to_config_dir",
|
||||
"wallet_location": "path_to_wallet_location",
|
||||
"wallet_password": "wallet_password",
|
||||
"workspace": "company",
|
||||
} # specify which docs you want to store and query
|
||||
)
|
||||
|
||||
oracle_db = OracleDB(config={
|
||||
"user":"",
|
||||
"password":"",
|
||||
"dsn":"",
|
||||
"config_dir":"path_to_config_dir",
|
||||
"wallet_location":"path_to_wallet_location",
|
||||
"wallet_password":"wallet_password",
|
||||
"workspace":"company"
|
||||
} # specify which docs you want to store and query
|
||||
)
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
chunk_token_size=512,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage = "OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage"
|
||||
)
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
chunk_token_size=512,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage="OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
@@ -128,7 +129,7 @@ async def init():
|
||||
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
#with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# await rag.ainsert(f.read())
|
||||
|
||||
# # Perform search in different modes
|
||||
@@ -147,9 +148,11 @@ class QueryRequest(BaseModel):
|
||||
only_need_context: bool = False
|
||||
only_need_prompt: bool = False
|
||||
|
||||
|
||||
class DataRequest(BaseModel):
|
||||
limit: int = 100
|
||||
|
||||
|
||||
class InsertRequest(BaseModel):
|
||||
text: str
|
||||
|
||||
@@ -164,6 +167,7 @@ class Response(BaseModel):
|
||||
|
||||
rag = None
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
global rag
|
||||
@@ -172,25 +176,28 @@ async def lifespan(app: FastAPI):
|
||||
yield
|
||||
|
||||
|
||||
app = FastAPI(title="LightRAG API", description="API for RAG operations",lifespan=lifespan)
|
||||
app = FastAPI(
|
||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
||||
)
|
||||
|
||||
|
||||
@app.post("/query", response_model=Response)
|
||||
async def query_endpoint(request: QueryRequest):
|
||||
#try:
|
||||
# loop = asyncio.get_event_loop()
|
||||
# try:
|
||||
# loop = asyncio.get_event_loop()
|
||||
if request.mode == "naive":
|
||||
top_k = 3
|
||||
else:
|
||||
top_k = 60
|
||||
result = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode,
|
||||
only_need_context=request.only_need_context,
|
||||
only_need_prompt=request.only_need_prompt,
|
||||
top_k=top_k
|
||||
),
|
||||
)
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode,
|
||||
only_need_context=request.only_need_context,
|
||||
only_need_prompt=request.only_need_prompt,
|
||||
top_k=top_k,
|
||||
),
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
# except Exception as e:
|
||||
# raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -199,9 +206,9 @@ async def query_endpoint(request: QueryRequest):
|
||||
@app.get("/data", response_model=Response)
|
||||
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
|
||||
if type == "nodes":
|
||||
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit = limit)
|
||||
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit=limit)
|
||||
elif type == "edges":
|
||||
result = await rag.chunk_entity_relation_graph.get_all_edges(limit = limit)
|
||||
result = await rag.chunk_entity_relation_graph.get_all_edges(limit=limit)
|
||||
elif type == "statistics":
|
||||
result = await rag.chunk_entity_relation_graph.get_statistics()
|
||||
return Response(status="success", data=result)
|
||||
@@ -264,4 +271,4 @@ if __name__ == "__main__":
|
||||
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
||||
|
||||
# 4. Health check:
|
||||
# curl -X GET "http://127.0.0.1:8020/health"
|
||||
# curl -X GET "http://127.0.0.1:8020/health"
|
||||
|
@@ -97,8 +97,7 @@ async def main():
|
||||
graph_storage="OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
|
||||
addon_params = {"example_number":1, "language":"Simplfied Chinese"},
|
||||
addon_params={"example_number": 1, "language": "Simplfied Chinese"},
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
|
Reference in New Issue
Block a user