working server

This commit is contained in:
Saifeddine ALOUI
2024-12-18 01:37:16 +01:00
parent 59edc324af
commit 2266399da6
3 changed files with 16 additions and 22 deletions

View File

@@ -56,13 +56,13 @@ Available options:
|-----------|---------|-------------|
| --host | 0.0.0.0 | Server host |
| --port | 9621 | Server port |
| --model | gemma2:2b | LLM model name |
| --embedding-model | nomic-embed-text | Embedding model name |
| --model | mistral-nemo:latest | LLM model name |
| --embedding-model | bge-m3:latest | Embedding model name |
| --ollama-host | http://localhost:11434 | Ollama host URL |
| --working-dir | ./dickens | Working directory for RAG |
| --working-dir | ./rag_storage | Working directory for RAG |
| --max-async | 4 | Maximum async operations |
| --max-tokens | 32768 | Maximum token size |
| --embedding-dim | 768 | Embedding dimensions |
| --embedding-dim | 1024 | Embedding dimensions |
| --max-embed-tokens | 8192 | Maximum embedding token size |
| --input-file | ./book.txt | Initial input file |
| --log-level | INFO | Logging level |
@@ -79,11 +79,11 @@ python ollama_lightrag_server.py
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
```
Make sure the models are installed in your ollama instance
```bash
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-dim 1024 --embedding-model bge-m3
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
```
## API Endpoints
### Query Endpoints
@@ -165,13 +165,6 @@ When the server is running, visit:
- Swagger UI: http://localhost:9621/docs
- ReDoc: http://localhost:9621/redoc
## Contributing
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
## License
@@ -182,5 +175,3 @@ This project is licensed under the MIT License - see the LICENSE file for detail
- Built with [FastAPI](https://fastapi.tiangolo.com/)
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
- Powered by [Ollama](https://ollama.ai/) for LLM inference
## Support