Merge branch 'main' into clear-doc
This commit is contained in:
48
README-zh.md
48
README-zh.md
@@ -409,6 +409,54 @@ if __name__ == "__main__":
|
||||
|
||||
</details>
|
||||
|
||||
### Token统计功能
|
||||
<details>
|
||||
<summary> <b>概述和使用</b> </summary>
|
||||
|
||||
LightRAG提供了TokenTracker工具来跟踪和管理大模型的token消耗。这个功能对于控制API成本和优化性能特别有用。
|
||||
|
||||
#### 使用方法
|
||||
|
||||
```python
|
||||
from lightrag.utils import TokenTracker
|
||||
|
||||
# 创建TokenTracker实例
|
||||
token_tracker = TokenTracker()
|
||||
|
||||
# 方法1:使用上下文管理器(推荐)
|
||||
# 适用于需要自动跟踪token使用的场景
|
||||
with token_tracker:
|
||||
result1 = await llm_model_func("你的问题1")
|
||||
result2 = await llm_model_func("你的问题2")
|
||||
|
||||
# 方法2:手动添加token使用记录
|
||||
# 适用于需要更精细控制token统计的场景
|
||||
token_tracker.reset()
|
||||
|
||||
rag.insert()
|
||||
|
||||
rag.query("你的问题1", param=QueryParam(mode="naive"))
|
||||
rag.query("你的问题2", param=QueryParam(mode="mix"))
|
||||
|
||||
# 显示总token使用量(包含插入和查询操作)
|
||||
print("Token usage:", token_tracker.get_usage())
|
||||
```
|
||||
|
||||
#### 使用建议
|
||||
- 在长会话或批量操作中使用上下文管理器,可以自动跟踪所有token消耗
|
||||
- 对于需要分段统计的场景,使用手动模式并适时调用reset()
|
||||
- 定期检查token使用情况,有助于及时发现异常消耗
|
||||
- 在开发测试阶段积极使用此功能,以便优化生产环境的成本
|
||||
|
||||
#### 实际应用示例
|
||||
您可以参考以下示例来实现token统计:
|
||||
- `examples/lightrag_gemini_track_token_demo.py`:使用Google Gemini模型的token统计示例
|
||||
- `examples/lightrag_siliconcloud_track_token_demo.py`:使用SiliconCloud模型的token统计示例
|
||||
|
||||
这些示例展示了如何在不同模型和场景下有效地使用TokenTracker功能。
|
||||
|
||||
</details>
|
||||
|
||||
### 对话历史
|
||||
|
||||
LightRAG现在通过对话历史功能支持多轮对话。以下是使用方法:
|
||||
|
214
README.md
214
README.md
@@ -440,11 +440,65 @@ if __name__ == "__main__":
|
||||
- [Direct OpenAI Example](examples/lightrag_llamaindex_direct_demo.py)
|
||||
- [LiteLLM Proxy Example](examples/lightrag_llamaindex_litellm_demo.py)
|
||||
|
||||
</details>
|
||||
|
||||
### Token Usage Tracking
|
||||
|
||||
<details>
|
||||
<summary> <b>Overview and Usage</b> </summary>
|
||||
|
||||
LightRAG provides a TokenTracker tool to monitor and manage token consumption by large language models. This feature is particularly useful for controlling API costs and optimizing performance.
|
||||
|
||||
#### Usage
|
||||
|
||||
```python
|
||||
from lightrag.utils import TokenTracker
|
||||
|
||||
# Create TokenTracker instance
|
||||
token_tracker = TokenTracker()
|
||||
|
||||
# Method 1: Using context manager (Recommended)
|
||||
# Suitable for scenarios requiring automatic token usage tracking
|
||||
with token_tracker:
|
||||
result1 = await llm_model_func("your question 1")
|
||||
result2 = await llm_model_func("your question 2")
|
||||
|
||||
# Method 2: Manually adding token usage records
|
||||
# Suitable for scenarios requiring more granular control over token statistics
|
||||
token_tracker.reset()
|
||||
|
||||
rag.insert()
|
||||
|
||||
rag.query("your question 1", param=QueryParam(mode="naive"))
|
||||
rag.query("your question 2", param=QueryParam(mode="mix"))
|
||||
|
||||
# Display total token usage (including insert and query operations)
|
||||
print("Token usage:", token_tracker.get_usage())
|
||||
```
|
||||
|
||||
#### Usage Tips
|
||||
- Use context managers for long sessions or batch operations to automatically track all token consumption
|
||||
- For scenarios requiring segmented statistics, use manual mode and call reset() when appropriate
|
||||
- Regular checking of token usage helps detect abnormal consumption early
|
||||
- Actively use this feature during development and testing to optimize production costs
|
||||
|
||||
#### Practical Examples
|
||||
You can refer to these examples for implementing token tracking:
|
||||
- `examples/lightrag_gemini_track_token_demo.py`: Token tracking example using Google Gemini model
|
||||
- `examples/lightrag_siliconcloud_track_token_demo.py`: Token tracking example using SiliconCloud model
|
||||
|
||||
These examples demonstrate how to effectively use the TokenTracker feature with different models and scenarios.
|
||||
|
||||
</details>
|
||||
|
||||
### Conversation History Support
|
||||
|
||||
|
||||
LightRAG now supports multi-turn dialogue through the conversation history feature. Here's how to use it:
|
||||
|
||||
<details>
|
||||
<summary> <b> Usage Example </b></summary>
|
||||
|
||||
```python
|
||||
# Create conversation history
|
||||
conversation_history = [
|
||||
@@ -467,10 +521,15 @@ response = rag.query(
|
||||
)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Custom Prompt Support
|
||||
|
||||
LightRAG now supports custom prompts for fine-tuned control over the system's behavior. Here's how to use it:
|
||||
|
||||
<details>
|
||||
<summary> <b> Usage Example </b></summary>
|
||||
|
||||
```python
|
||||
# Create query parameters
|
||||
query_param = QueryParam(
|
||||
@@ -505,6 +564,8 @@ response_custom = rag.query(
|
||||
print(response_custom)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Separate Keyword Extraction
|
||||
|
||||
We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
|
||||
@@ -518,7 +579,8 @@ The function operates by dividing the input into two parts:
|
||||
|
||||
It then performs keyword extraction exclusively on the `user query`. This separation ensures that the extraction process is focused and relevant, unaffected by any additional language in the `prompt`. It also allows the `prompt` to serve purely for response formatting, maintaining the intent and clarity of the user's original question.
|
||||
|
||||
**Usage Example**
|
||||
<details>
|
||||
<summary> <b> Usage Example </b></summary>
|
||||
|
||||
This `example` shows how to tailor the function for educational content, focusing on detailed explanations for older students.
|
||||
|
||||
@@ -530,67 +592,6 @@ rag.query_with_separate_keyword_extraction(
|
||||
)
|
||||
```
|
||||
|
||||
### Insert Custom KG
|
||||
|
||||
```python
|
||||
custom_kg = {
|
||||
"chunks": [
|
||||
{
|
||||
"content": "Alice and Bob are collaborating on quantum computing research.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"entities": [
|
||||
{
|
||||
"entity_name": "Alice",
|
||||
"entity_type": "person",
|
||||
"description": "Alice is a researcher specializing in quantum physics.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "Bob",
|
||||
"entity_type": "person",
|
||||
"description": "Bob is a mathematician.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "Quantum Computing",
|
||||
"entity_type": "technology",
|
||||
"description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Bob",
|
||||
"description": "Alice and Bob are research partners.",
|
||||
"keywords": "collaboration research",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Alice conducts research on quantum computing.",
|
||||
"keywords": "research expertise",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Bob",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Bob researches quantum computing.",
|
||||
"keywords": "research application",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Insert
|
||||
@@ -682,6 +683,70 @@ rag.insert(text_content.decode('utf-8'))
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b> Insert Custom KG </b></summary>
|
||||
|
||||
```python
|
||||
custom_kg = {
|
||||
"chunks": [
|
||||
{
|
||||
"content": "Alice and Bob are collaborating on quantum computing research.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"entities": [
|
||||
{
|
||||
"entity_name": "Alice",
|
||||
"entity_type": "person",
|
||||
"description": "Alice is a researcher specializing in quantum physics.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "Bob",
|
||||
"entity_type": "person",
|
||||
"description": "Bob is a mathematician.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "Quantum Computing",
|
||||
"entity_type": "technology",
|
||||
"description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Bob",
|
||||
"description": "Alice and Bob are research partners.",
|
||||
"keywords": "collaboration research",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Alice conducts research on quantum computing.",
|
||||
"keywords": "research expertise",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Bob",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Bob researches quantum computing.",
|
||||
"keywords": "research application",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Citation Functionality</b></summary>
|
||||
|
||||
@@ -841,7 +906,8 @@ rag.delete_by_doc_id("doc_id")
|
||||
|
||||
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.
|
||||
|
||||
### Create Entities and Relations
|
||||
<details>
|
||||
<summary> <b> Create Entities and Relations </b></summary>
|
||||
|
||||
```python
|
||||
# Create new entity
|
||||
@@ -864,7 +930,10 @@ relation = rag.create_relation("Google", "Gmail", {
|
||||
})
|
||||
```
|
||||
|
||||
### Edit Entities and Relations
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b> Edit Entities and Relations </b></summary>
|
||||
|
||||
```python
|
||||
# Edit an existing entity
|
||||
@@ -901,6 +970,8 @@ All operations are available in both synchronous and asynchronous versions. The
|
||||
|
||||
These operations maintain data consistency across both the graph database and vector database components, ensuring your knowledge graph remains coherent.
|
||||
|
||||
</details>
|
||||
|
||||
## Data Export Functions
|
||||
|
||||
### Overview
|
||||
@@ -909,7 +980,8 @@ LightRAG allows you to export your knowledge graph data in various formats for a
|
||||
|
||||
### Export Functions
|
||||
|
||||
#### Basic Usage
|
||||
<details>
|
||||
<summary> <b> Basic Usage </b></summary>
|
||||
|
||||
```python
|
||||
# Basic CSV export (default format)
|
||||
@@ -919,7 +991,10 @@ rag.export_data("knowledge_graph.csv")
|
||||
rag.export_data("output.xlsx", file_format="excel")
|
||||
```
|
||||
|
||||
#### Different File Formats supported
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b> Different File Formats supported </b></summary>
|
||||
|
||||
```python
|
||||
#Export data in CSV format
|
||||
@@ -934,13 +1009,18 @@ rag.export_data("graph_data.md", file_format="md")
|
||||
# Export data in Text
|
||||
rag.export_data("graph_data.txt", file_format="txt")
|
||||
```
|
||||
#### Additional Options
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b> Additional Options </b></summary>
|
||||
|
||||
Include vector embeddings in the export (optional):
|
||||
|
||||
```python
|
||||
rag.export_data("complete_data.csv", include_vector_data=True)
|
||||
```
|
||||
</details>
|
||||
|
||||
### Data Included in Export
|
||||
|
||||
All exports include:
|
||||
|
@@ -115,12 +115,11 @@ def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Reset tracker before processing queries
|
||||
token_tracker.reset()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Context Manager Method
|
||||
with token_tracker:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
@@ -135,19 +134,18 @@ def main():
|
||||
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global"),
|
||||
)
|
||||
)
|
||||
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid"),
|
||||
)
|
||||
)
|
||||
|
||||
# Display final token usage after main query
|
||||
print("Token usage:", token_tracker.get_usage())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -44,15 +44,11 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
|
||||
# function test
|
||||
async def test_funcs():
|
||||
# Reset tracker before processing queries
|
||||
token_tracker.reset()
|
||||
|
||||
# Context Manager Method
|
||||
with token_tracker:
|
||||
result = await llm_model_func("How are you?")
|
||||
print("llm_model_func: ", result)
|
||||
|
||||
# Display final token usage after main query
|
||||
print("Token usage:", token_tracker.get_usage())
|
||||
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
|
@@ -44,6 +44,47 @@ class InvalidResponseError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def create_openai_async_client(
|
||||
api_key: str | None = None,
|
||||
base_url: str | None = None,
|
||||
client_configs: dict[str, Any] = None,
|
||||
) -> AsyncOpenAI:
|
||||
"""Create an AsyncOpenAI client with the given configuration.
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
||||
Returns:
|
||||
An AsyncOpenAI client instance.
|
||||
"""
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
@@ -61,29 +102,52 @@ async def openai_complete_if_cache(
|
||||
token_tracker: Any | None = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support.
|
||||
|
||||
Args:
|
||||
model: The OpenAI model to use.
|
||||
prompt: The prompt to complete.
|
||||
system_prompt: Optional system prompt to include.
|
||||
history_messages: Optional list of previous messages in the conversation.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
**kwargs: Additional keyword arguments to pass to the OpenAI API.
|
||||
Special kwargs:
|
||||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||
|
||||
Returns:
|
||||
The completed text or an async iterator of text chunks if streaming.
|
||||
|
||||
Raises:
|
||||
InvalidResponseError: If the response from OpenAI is invalid or empty.
|
||||
APIConnectionError: If there is a connection error with the OpenAI API.
|
||||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||
APITimeoutError: If the OpenAI API request times out.
|
||||
"""
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
# Set openai logger level to INFO when VERBOSE_DEBUG is off
|
||||
if not VERBOSE_DEBUG and logger.level == logging.DEBUG:
|
||||
logging.getLogger("openai").setLevel(logging.INFO)
|
||||
|
||||
openai_async_client = (
|
||||
AsyncOpenAI(default_headers=default_headers, api_key=api_key)
|
||||
if base_url is None
|
||||
else AsyncOpenAI(
|
||||
base_url=base_url, default_headers=default_headers, api_key=api_key
|
||||
)
|
||||
# Extract client configuration options
|
||||
client_configs = kwargs.pop("openai_client_configs", {})
|
||||
|
||||
# Create the OpenAI client
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
||||
)
|
||||
|
||||
# Remove special kwargs that shouldn't be passed to OpenAI
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
|
||||
# Prepare messages
|
||||
messages: list[dict[str, Any]] = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
@@ -272,21 +336,32 @@ async def openai_embed(
|
||||
model: str = "text-embedding-3-small",
|
||||
base_url: str = None,
|
||||
api_key: str = None,
|
||||
client_configs: dict[str, Any] = None,
|
||||
) -> np.ndarray:
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
"""Generate embeddings for a list of texts using OpenAI's API.
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
openai_async_client = (
|
||||
AsyncOpenAI(default_headers=default_headers, api_key=api_key)
|
||||
if base_url is None
|
||||
else AsyncOpenAI(
|
||||
base_url=base_url, default_headers=default_headers, api_key=api_key
|
||||
)
|
||||
Args:
|
||||
texts: List of texts to embed.
|
||||
model: The OpenAI embedding model to use.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
||||
Returns:
|
||||
A numpy array of embeddings, one per input text.
|
||||
|
||||
Raises:
|
||||
APIConnectionError: If there is a connection error with the OpenAI API.
|
||||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||
APITimeoutError: If the OpenAI API request times out.
|
||||
"""
|
||||
# Create the OpenAI client
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
||||
)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
)
|
||||
|
@@ -697,8 +697,7 @@ async def kg_query(
|
||||
if cached_response is not None:
|
||||
return cached_response
|
||||
|
||||
# Extract keywords using extract_keywords_only function which already supports conversation history
|
||||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||||
hl_keywords, ll_keywords = await get_keywords_from_query(
|
||||
query, query_param, global_config, hashing_kv
|
||||
)
|
||||
|
||||
@@ -794,6 +793,38 @@ async def kg_query(
|
||||
return response
|
||||
|
||||
|
||||
async def get_keywords_from_query(
|
||||
query: str,
|
||||
query_param: QueryParam,
|
||||
global_config: dict[str, str],
|
||||
hashing_kv: BaseKVStorage | None = None,
|
||||
) -> tuple[list[str], list[str]]:
|
||||
"""
|
||||
Retrieves high-level and low-level keywords for RAG operations.
|
||||
|
||||
This function checks if keywords are already provided in query parameters,
|
||||
and if not, extracts them from the query text using LLM.
|
||||
|
||||
Args:
|
||||
query: The user's query text
|
||||
query_param: Query parameters that may contain pre-defined keywords
|
||||
global_config: Global configuration dictionary
|
||||
hashing_kv: Optional key-value storage for caching results
|
||||
|
||||
Returns:
|
||||
A tuple containing (high_level_keywords, low_level_keywords)
|
||||
"""
|
||||
# Check if pre-defined keywords are already provided
|
||||
if query_param.hl_keywords or query_param.ll_keywords:
|
||||
return query_param.hl_keywords, query_param.ll_keywords
|
||||
|
||||
# Extract keywords using extract_keywords_only function which already supports conversation history
|
||||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||||
query, query_param, global_config, hashing_kv
|
||||
)
|
||||
return hl_keywords, ll_keywords
|
||||
|
||||
|
||||
async def extract_keywords_only(
|
||||
text: str,
|
||||
param: QueryParam,
|
||||
@@ -934,8 +965,7 @@ async def mix_kg_vector_query(
|
||||
# 2. Execute knowledge graph and vector searches in parallel
|
||||
async def get_kg_context():
|
||||
try:
|
||||
# Extract keywords using extract_keywords_only function which already supports conversation history
|
||||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||||
hl_keywords, ll_keywords = await get_keywords_from_query(
|
||||
query, query_param, global_config, hashing_kv
|
||||
)
|
||||
|
||||
@@ -983,7 +1013,6 @@ async def mix_kg_vector_query(
|
||||
try:
|
||||
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
|
||||
mix_topk = min(10, query_param.top_k)
|
||||
# TODO: add ids to the query
|
||||
results = await chunks_vdb.query(
|
||||
augmented_query, top_k=mix_topk, ids=query_param.ids
|
||||
)
|
||||
@@ -1581,9 +1610,7 @@ async def _get_edge_data(
|
||||
|
||||
text_units_section_list = [["id", "content", "file_path"]]
|
||||
for i, t in enumerate(use_text_units):
|
||||
text_units_section_list.append(
|
||||
[i, t["content"], t.get("file_path", "unknown_source")]
|
||||
)
|
||||
text_units_section_list.append([i, t["content"], t.get("file_path", "unknown")])
|
||||
text_units_context = list_of_list_to_csv(text_units_section_list)
|
||||
return entities_context, relations_context, text_units_context
|
||||
|
||||
@@ -2017,16 +2044,13 @@ async def query_with_keywords(
|
||||
Query response or async iterator
|
||||
"""
|
||||
# Extract keywords
|
||||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||||
text=query,
|
||||
param=param,
|
||||
hl_keywords, ll_keywords = await get_keywords_from_query(
|
||||
query=query,
|
||||
query_param=param,
|
||||
global_config=global_config,
|
||||
hashing_kv=hashing_kv,
|
||||
)
|
||||
|
||||
param.hl_keywords = hl_keywords
|
||||
param.ll_keywords = ll_keywords
|
||||
|
||||
# Create a new string with the prompt and the keywords
|
||||
ll_keywords_str = ", ".join(ll_keywords)
|
||||
hl_keywords_str = ", ".join(hl_keywords)
|
||||
|
@@ -962,6 +962,13 @@ class TokenTracker:
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def __enter__(self):
|
||||
self.reset()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
print(self)
|
||||
|
||||
def reset(self):
|
||||
self.prompt_tokens = 0
|
||||
self.completion_tokens = 0
|
||||
|
@@ -205,7 +205,7 @@ const createSigmaGraph = (rawGraph: RawGraph | null) => {
|
||||
// Add edges from raw graph data
|
||||
for (const rawEdge of rawGraph?.edges ?? []) {
|
||||
rawEdge.dynamicId = graph.addDirectedEdge(rawEdge.source, rawEdge.target, {
|
||||
label: rawEdge.type || undefined
|
||||
label: rawEdge.properties?.keywords || undefined
|
||||
})
|
||||
}
|
||||
|
||||
@@ -666,7 +666,7 @@ const useLightrangeGraph = () => {
|
||||
|
||||
// Add the edge to the sigma graph
|
||||
newEdge.dynamicId = sigmaGraph.addDirectedEdge(newEdge.source, newEdge.target, {
|
||||
label: newEdge.type || undefined
|
||||
label: newEdge.properties?.keywords || undefined
|
||||
});
|
||||
|
||||
// Add the edge to the raw graph
|
||||
|
Reference in New Issue
Block a user