feat(examples): support siliconcloud free API

This commit is contained in:
tpoisonooo
2024-10-22 15:16:57 +08:00
parent 2720442893
commit 274d0fcc92
4 changed files with 129 additions and 2 deletions

View File

@@ -2,8 +2,11 @@ import os
import copy
import json
import aioboto3
import aiohttp
import numpy as np
import ollama
import base64
import struct
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
from tenacity import (
retry,
@@ -312,7 +315,7 @@ async def ollama_model_complete(
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(
@@ -332,6 +335,49 @@ async def openai_embedding(
)
return np.array([dp.embedding for dp in response.data])
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def siliconcloud_embedding(
texts: list[str],
model: str = "netease-youdao/bce-embedding-base_v1",
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
max_token_size: int = 512,
api_key: str = None,
) -> np.ndarray:
if api_key and not api_key.startswith('Bearer '):
api_key = 'Bearer ' + api_key
headers = {
"Authorization": api_key,
"Content-Type": "application/json"
}
truncate_texts = [text[0:max_token_size] for text in texts]
payload = {
"model": model,
"input": truncate_texts,
"encoding_format": "base64"
}
base64_strings = []
async with aiohttp.ClientSession() as session:
async with session.post(base_url, headers=headers, json=payload) as response:
content = await response.json()
if 'code' in content:
raise ValueError(content)
base64_strings = [item['embedding'] for item in content['data']]
embeddings = []
for string in base64_strings:
decode_bytes = base64.b64decode(string)
n = len(decode_bytes) // 4
float_array = struct.unpack('<' + 'f' * n, decode_bytes)
embeddings.append(float_array)
return np.array(embeddings)
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
# @retry(