Fix linting errors

This commit is contained in:
Gurjot Singh
2025-01-31 19:05:47 +05:30
parent 8a624e198a
commit 2894e8faf2
2 changed files with 15 additions and 15 deletions

View File

@@ -8,7 +8,6 @@ from sentence_transformers import SentenceTransformer
from openai import AzureOpenAI
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
from lightrag.kg.faiss_impl import FaissVectorDBStorage
# Configure Logging
logging.basicConfig(level=logging.INFO)
@@ -20,14 +19,10 @@ AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
async def llm_model_func(
prompt,
system_prompt=None,
history_messages=[],
keyword_extraction=False,
**kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
# Create a client for AzureOpenAI
client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
@@ -56,12 +51,12 @@ async def llm_model_func(
async def embedding_func(texts: list[str]) -> np.ndarray:
model = SentenceTransformer('all-MiniLM-L6-v2')
model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = model.encode(texts, convert_to_numpy=True)
return embeddings
def main():
WORKING_DIR = "./dickens"
# Initialize LightRAG with the LLM model function and embedding function
@@ -76,7 +71,7 @@ def main():
vector_storage="FaissVectorDBStorage",
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": 0.3 # Your desired threshold
}
},
)
# Insert the custom chunks into LightRAG
@@ -101,4 +96,4 @@ def main():
if __name__ == "__main__":
main()
main()

View File

@@ -22,6 +22,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
A Faiss-based Vector DB Storage for LightRAG.
Uses cosine similarity by storing normalized vectors in a Faiss index with inner product search.
"""
cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2"))
def __post_init__(self):
@@ -46,7 +47,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
# For demonstration, we use a simple IndexFlatIP.
self._index = faiss.IndexFlatIP(self._dim)
# Keep a local store for metadata, IDs, etc.
# Keep a local store for metadata, IDs, etc.
# Maps <int faiss_id> → metadata (including your original ID).
self._id_to_meta = {}
@@ -93,7 +94,9 @@ class FaissVectorDBStorage(BaseVectorStorage):
for i in range(0, len(contents), self._max_batch_size)
]
pbar = tqdm_async(total=len(batches), desc="Generating embeddings", unit="batch")
pbar = tqdm_async(
total=len(batches), desc="Generating embeddings", unit="batch"
)
async def wrapped_task(batch):
result = await self.embedding_func(batch)
@@ -200,7 +203,9 @@ class FaissVectorDBStorage(BaseVectorStorage):
if to_remove:
self._remove_faiss_ids(to_remove)
logger.info(f"Successfully deleted {len(to_remove)} vectors from {self.namespace}")
logger.info(
f"Successfully deleted {len(to_remove)} vectors from {self.namespace}"
)
async def delete_entity(self, entity_name: str):
"""
@@ -288,7 +293,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
def _load_faiss_index(self):
"""
Load the Faiss index + metadata from disk if it exists,
Load the Faiss index + metadata from disk if it exists,
and rebuild in-memory structures so we can query.
"""
if not os.path.exists(self._faiss_index_file):