updated readme
This commit is contained in:
15
README.md
15
README.md
@@ -408,6 +408,21 @@ rag = LightRAG(
|
|||||||
with open("./newText.txt") as f:
|
with open("./newText.txt") as f:
|
||||||
rag.insert(f.read())
|
rag.insert(f.read())
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Insert using Pipeline
|
||||||
|
The `apipeline_enqueue_documents` and `apipeline_process_enqueue_documents` functions allow you to perform incremental insertion of documents into the graph.
|
||||||
|
|
||||||
|
This is useful for scenarios where you want to process documents in the background while still allowing the main thread to continue executing.
|
||||||
|
|
||||||
|
And using a routine to process news documents.
|
||||||
|
|
||||||
|
```python
|
||||||
|
rag = LightRAG(..)
|
||||||
|
await rag.apipeline_enqueue_documents(string_or_strings)
|
||||||
|
# Your routine in loop
|
||||||
|
await rag.apipeline_process_enqueue_documents(string_or_strings)
|
||||||
|
```
|
||||||
|
|
||||||
### Separate Keyword Extraction
|
### Separate Keyword Extraction
|
||||||
We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
|
We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user