Merge pull request #1328 from danielaskdd/main
Fix LLM cache now work for nodes and edges merging
This commit is contained in:
@@ -1 +1 @@
|
||||
__api_version__ = "0142"
|
||||
__api_version__ = "0143"
|
||||
|
@@ -116,7 +116,7 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
"""
|
||||
if not data:
|
||||
return
|
||||
logger.info(f"Inserting {len(data)} records to {self.namespace}")
|
||||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._storage_lock:
|
||||
self._data.update(data)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
@@ -121,7 +121,7 @@ class JsonKVStorage(BaseKVStorage):
|
||||
"""
|
||||
if not data:
|
||||
return
|
||||
logger.info(f"Inserting {len(data)} records to {self.namespace}")
|
||||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._storage_lock:
|
||||
self._data.update(data)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
@@ -85,7 +85,7 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
KG-storage-log should be used to avoid data corruption
|
||||
"""
|
||||
|
||||
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
||||
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
||||
if not data:
|
||||
return
|
||||
|
||||
|
@@ -392,7 +392,7 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
# Check if storage was updated by another process
|
||||
if self.storage_updated.value:
|
||||
# Storage was updated by another process, reload data instead of saving
|
||||
logger.warning(
|
||||
logger.info(
|
||||
f"Graph for {self.namespace} was updated by another process, reloading..."
|
||||
)
|
||||
self._graph = (
|
||||
|
@@ -361,7 +361,7 @@ class PGKVStorage(BaseKVStorage):
|
||||
|
||||
################ INSERT METHODS ################
|
||||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||||
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
||||
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
||||
if not data:
|
||||
return
|
||||
|
||||
@@ -560,7 +560,7 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
return upsert_sql, data
|
||||
|
||||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||||
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
||||
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
||||
if not data:
|
||||
return
|
||||
|
||||
@@ -949,7 +949,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
||||
Args:
|
||||
data: dictionary of document IDs and their status data
|
||||
"""
|
||||
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
||||
logger.debug(f"Inserting {len(data)} to {self.namespace}")
|
||||
if not data:
|
||||
return
|
||||
|
||||
|
@@ -24,8 +24,8 @@ from .utils import (
|
||||
handle_cache,
|
||||
save_to_cache,
|
||||
CacheData,
|
||||
statistic_data,
|
||||
get_conversation_turns,
|
||||
use_llm_func_with_cache,
|
||||
)
|
||||
from .base import (
|
||||
BaseGraphStorage,
|
||||
@@ -106,6 +106,9 @@ async def _handle_entity_relation_summary(
|
||||
entity_or_relation_name: str,
|
||||
description: str,
|
||||
global_config: dict,
|
||||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
) -> str:
|
||||
"""Handle entity relation summary
|
||||
For each entity or relation, input is the combined description of already existing description and new description.
|
||||
@@ -122,6 +125,7 @@ async def _handle_entity_relation_summary(
|
||||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||||
if len(tokens) < summary_max_tokens: # No need for summary
|
||||
return description
|
||||
|
||||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||||
use_description = decode_tokens_by_tiktoken(
|
||||
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
||||
@@ -133,7 +137,23 @@ async def _handle_entity_relation_summary(
|
||||
)
|
||||
use_prompt = prompt_template.format(**context_base)
|
||||
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
||||
summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens)
|
||||
|
||||
# Update pipeline status when LLM summary is needed
|
||||
status_message = "Use LLM to re-summary description..."
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
# Use LLM function with cache
|
||||
summary = await use_llm_func_with_cache(
|
||||
use_prompt,
|
||||
use_llm_func,
|
||||
llm_response_cache=llm_response_cache,
|
||||
max_tokens=summary_max_tokens,
|
||||
cache_type="extract",
|
||||
)
|
||||
return summary
|
||||
|
||||
|
||||
@@ -212,6 +232,9 @@ async def _merge_nodes_then_upsert(
|
||||
nodes_data: list[dict],
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
global_config: dict,
|
||||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
):
|
||||
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
||||
already_entity_types = []
|
||||
@@ -221,6 +244,14 @@ async def _merge_nodes_then_upsert(
|
||||
|
||||
already_node = await knowledge_graph_inst.get_node(entity_name)
|
||||
if already_node is not None:
|
||||
# Update pipeline status when a node that needs merging is found
|
||||
status_message = f"Merging entity: {entity_name}"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
already_entity_types.append(already_node["entity_type"])
|
||||
already_source_ids.extend(
|
||||
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
|
||||
@@ -249,7 +280,12 @@ async def _merge_nodes_then_upsert(
|
||||
|
||||
logger.debug(f"file_path: {file_path}")
|
||||
description = await _handle_entity_relation_summary(
|
||||
entity_name, description, global_config
|
||||
entity_name,
|
||||
description,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
node_data = dict(
|
||||
entity_id=entity_name,
|
||||
@@ -272,6 +308,9 @@ async def _merge_edges_then_upsert(
|
||||
edges_data: list[dict],
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
global_config: dict,
|
||||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
):
|
||||
already_weights = []
|
||||
already_source_ids = []
|
||||
@@ -280,6 +319,14 @@ async def _merge_edges_then_upsert(
|
||||
already_file_paths = []
|
||||
|
||||
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
|
||||
# Update pipeline status when an edge that needs merging is found
|
||||
status_message = f"Merging edge::: {src_id} - {tgt_id}"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
|
||||
# Handle the case where get_edge returns None or missing fields
|
||||
if already_edge:
|
||||
@@ -358,7 +405,12 @@ async def _merge_edges_then_upsert(
|
||||
},
|
||||
)
|
||||
description = await _handle_entity_relation_summary(
|
||||
f"({src_id}, {tgt_id})", description, global_config
|
||||
f"({src_id}, {tgt_id})",
|
||||
description,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
await knowledge_graph_inst.upsert_edge(
|
||||
src_id,
|
||||
@@ -396,9 +448,6 @@ async def extract_entities(
|
||||
) -> None:
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||||
enable_llm_cache_for_entity_extract: bool = global_config[
|
||||
"enable_llm_cache_for_entity_extract"
|
||||
]
|
||||
|
||||
ordered_chunks = list(chunks.items())
|
||||
# add language and example number params to prompt
|
||||
@@ -449,51 +498,7 @@ async def extract_entities(
|
||||
|
||||
graph_db_lock = get_graph_db_lock(enable_logging=False)
|
||||
|
||||
async def _user_llm_func_with_cache(
|
||||
input_text: str, history_messages: list[dict[str, str]] = None
|
||||
) -> str:
|
||||
if enable_llm_cache_for_entity_extract and llm_response_cache:
|
||||
if history_messages:
|
||||
history = json.dumps(history_messages, ensure_ascii=False)
|
||||
_prompt = history + "\n" + input_text
|
||||
else:
|
||||
_prompt = input_text
|
||||
|
||||
# TODO: add cache_type="extract"
|
||||
arg_hash = compute_args_hash(_prompt)
|
||||
cached_return, _1, _2, _3 = await handle_cache(
|
||||
llm_response_cache,
|
||||
arg_hash,
|
||||
_prompt,
|
||||
"default",
|
||||
cache_type="extract",
|
||||
)
|
||||
if cached_return:
|
||||
logger.debug(f"Found cache for {arg_hash}")
|
||||
statistic_data["llm_cache"] += 1
|
||||
return cached_return
|
||||
statistic_data["llm_call"] += 1
|
||||
if history_messages:
|
||||
res: str = await use_llm_func(
|
||||
input_text, history_messages=history_messages
|
||||
)
|
||||
else:
|
||||
res: str = await use_llm_func(input_text)
|
||||
await save_to_cache(
|
||||
llm_response_cache,
|
||||
CacheData(
|
||||
args_hash=arg_hash,
|
||||
content=res,
|
||||
prompt=_prompt,
|
||||
cache_type="extract",
|
||||
),
|
||||
)
|
||||
return res
|
||||
|
||||
if history_messages:
|
||||
return await use_llm_func(input_text, history_messages=history_messages)
|
||||
else:
|
||||
return await use_llm_func(input_text)
|
||||
# Use the global use_llm_func_with_cache function from utils.py
|
||||
|
||||
async def _process_extraction_result(
|
||||
result: str, chunk_key: str, file_path: str = "unknown_source"
|
||||
@@ -558,7 +563,12 @@ async def extract_entities(
|
||||
**context_base, input_text="{input_text}"
|
||||
).format(**context_base, input_text=content)
|
||||
|
||||
final_result = await _user_llm_func_with_cache(hint_prompt)
|
||||
final_result = await use_llm_func_with_cache(
|
||||
hint_prompt,
|
||||
use_llm_func,
|
||||
llm_response_cache=llm_response_cache,
|
||||
cache_type="extract",
|
||||
)
|
||||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
||||
|
||||
# Process initial extraction with file path
|
||||
@@ -568,8 +578,12 @@ async def extract_entities(
|
||||
|
||||
# Process additional gleaning results
|
||||
for now_glean_index in range(entity_extract_max_gleaning):
|
||||
glean_result = await _user_llm_func_with_cache(
|
||||
continue_prompt, history_messages=history
|
||||
glean_result = await use_llm_func_with_cache(
|
||||
continue_prompt,
|
||||
use_llm_func,
|
||||
llm_response_cache=llm_response_cache,
|
||||
history_messages=history,
|
||||
cache_type="extract",
|
||||
)
|
||||
|
||||
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
||||
@@ -588,8 +602,12 @@ async def extract_entities(
|
||||
if now_glean_index == entity_extract_max_gleaning - 1:
|
||||
break
|
||||
|
||||
if_loop_result: str = await _user_llm_func_with_cache(
|
||||
if_loop_prompt, history_messages=history
|
||||
if_loop_result: str = await use_llm_func_with_cache(
|
||||
if_loop_prompt,
|
||||
use_llm_func,
|
||||
llm_response_cache=llm_response_cache,
|
||||
history_messages=history,
|
||||
cache_type="extract",
|
||||
)
|
||||
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
||||
if if_loop_result != "yes":
|
||||
@@ -613,7 +631,13 @@ async def extract_entities(
|
||||
# Process and update entities
|
||||
for entity_name, entities in maybe_nodes.items():
|
||||
entity_data = await _merge_nodes_then_upsert(
|
||||
entity_name, entities, knowledge_graph_inst, global_config
|
||||
entity_name,
|
||||
entities,
|
||||
knowledge_graph_inst,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
chunk_entities_data.append(entity_data)
|
||||
|
||||
@@ -627,6 +651,9 @@ async def extract_entities(
|
||||
edges,
|
||||
knowledge_graph_inst,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
chunk_relationships_data.append(edge_data)
|
||||
|
||||
|
@@ -12,13 +12,17 @@ import re
|
||||
from dataclasses import dataclass
|
||||
from functools import wraps
|
||||
from hashlib import md5
|
||||
from typing import Any, Callable
|
||||
from typing import Any, Callable, TYPE_CHECKING
|
||||
import xml.etree.ElementTree as ET
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
from lightrag.prompt import PROMPTS
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Use TYPE_CHECKING to avoid circular imports
|
||||
if TYPE_CHECKING:
|
||||
from lightrag.base import BaseKVStorage
|
||||
|
||||
# use the .env that is inside the current folder
|
||||
# allows to use different .env file for each lightrag instance
|
||||
# the OS environment variables take precedence over the .env file
|
||||
@@ -908,6 +912,84 @@ def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any
|
||||
return import_class
|
||||
|
||||
|
||||
async def use_llm_func_with_cache(
|
||||
input_text: str,
|
||||
use_llm_func: callable,
|
||||
llm_response_cache: "BaseKVStorage | None" = None,
|
||||
max_tokens: int = None,
|
||||
history_messages: list[dict[str, str]] = None,
|
||||
cache_type: str = "extract",
|
||||
) -> str:
|
||||
"""Call LLM function with cache support
|
||||
|
||||
If cache is available and enabled (determined by handle_cache based on mode),
|
||||
retrieve result from cache; otherwise call LLM function and save result to cache.
|
||||
|
||||
Args:
|
||||
input_text: Input text to send to LLM
|
||||
use_llm_func: LLM function to call
|
||||
llm_response_cache: Cache storage instance
|
||||
max_tokens: Maximum tokens for generation
|
||||
history_messages: History messages list
|
||||
cache_type: Type of cache
|
||||
|
||||
Returns:
|
||||
LLM response text
|
||||
"""
|
||||
if llm_response_cache:
|
||||
if history_messages:
|
||||
history = json.dumps(history_messages, ensure_ascii=False)
|
||||
_prompt = history + "\n" + input_text
|
||||
else:
|
||||
_prompt = input_text
|
||||
|
||||
arg_hash = compute_args_hash(_prompt)
|
||||
cached_return, _1, _2, _3 = await handle_cache(
|
||||
llm_response_cache,
|
||||
arg_hash,
|
||||
_prompt,
|
||||
"default",
|
||||
cache_type=cache_type,
|
||||
)
|
||||
if cached_return:
|
||||
logger.debug(f"Found cache for {arg_hash}")
|
||||
statistic_data["llm_cache"] += 1
|
||||
return cached_return
|
||||
statistic_data["llm_call"] += 1
|
||||
|
||||
# Call LLM
|
||||
kwargs = {}
|
||||
if history_messages:
|
||||
kwargs["history_messages"] = history_messages
|
||||
if max_tokens is not None:
|
||||
kwargs["max_tokens"] = max_tokens
|
||||
|
||||
res: str = await use_llm_func(input_text, **kwargs)
|
||||
|
||||
# Save to cache
|
||||
logger.info(f"Saving LLM cache for {arg_hash}")
|
||||
await save_to_cache(
|
||||
llm_response_cache,
|
||||
CacheData(
|
||||
args_hash=arg_hash,
|
||||
content=res,
|
||||
prompt=_prompt,
|
||||
cache_type=cache_type,
|
||||
),
|
||||
)
|
||||
return res
|
||||
|
||||
# When cache is disabled, directly call LLM
|
||||
kwargs = {}
|
||||
if history_messages:
|
||||
kwargs["history_messages"] = history_messages
|
||||
if max_tokens is not None:
|
||||
kwargs["max_tokens"] = max_tokens
|
||||
|
||||
logger.info(f"Call LLM function with query text lenght: {len(input_text)}")
|
||||
return await use_llm_func(input_text, **kwargs)
|
||||
|
||||
|
||||
def get_content_summary(content: str, max_length: int = 250) -> str:
|
||||
"""Get summary of document content
|
||||
|
||||
|
Reference in New Issue
Block a user