revert vector and graph use local data(single process)

This commit is contained in:
yangdx
2025-02-28 01:14:25 +08:00
parent db2a902fcb
commit 291e0c1b14
4 changed files with 287 additions and 443 deletions

View File

@@ -6,12 +6,6 @@ import numpy as np
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from lightrag.utils import logger
from lightrag.base import BaseGraphStorage
from .shared_storage import (
get_storage_lock,
get_namespace_object,
is_multiprocess,
try_initialize_namespace,
)
import pipmaster as pm
@@ -23,7 +17,7 @@ if not pm.is_installed("graspologic"):
import networkx as nx
from graspologic import embed
from threading import Lock as ThreadLock
@final
@dataclass
@@ -78,38 +72,23 @@ class NetworkXStorage(BaseGraphStorage):
self._graphml_xml_file = os.path.join(
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
)
self._storage_lock = get_storage_lock()
# check need_init must before get_namespace_object
need_init = try_initialize_namespace(self.namespace)
self._graph = get_namespace_object(self.namespace)
if need_init:
if is_multiprocess:
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
self._graph.value = preloaded_graph or nx.Graph()
if preloaded_graph:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
else:
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
self._graph = preloaded_graph or nx.Graph()
if preloaded_graph:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
self._storage_lock = ThreadLock()
with self._storage_lock:
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
else:
logger.info("Created new empty graph")
self._graph = preloaded_graph or nx.Graph()
self._node_embed_algorithms = {
"node2vec": self._node2vec_embed,
}
def _get_graph(self):
"""Get the appropriate graph instance based on multiprocess mode"""
if is_multiprocess:
return self._graph.value
"""Check if the shtorage should be reloaded"""
return self._graph
async def index_done_callback(self) -> None:
@@ -117,54 +96,44 @@ class NetworkXStorage(BaseGraphStorage):
NetworkXStorage.write_nx_graph(self._get_graph(), self._graphml_xml_file)
async def has_node(self, node_id: str) -> bool:
with self._storage_lock:
return self._get_graph().has_node(node_id)
return self._get_graph().has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
with self._storage_lock:
return self._get_graph().has_edge(source_node_id, target_node_id)
return self._get_graph().has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> dict[str, str] | None:
with self._storage_lock:
return self._get_graph().nodes.get(node_id)
return self._get_graph().nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
with self._storage_lock:
return self._get_graph().degree(node_id)
return self._get_graph().degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
with self._storage_lock:
return self._get_graph().degree(src_id) + self._get_graph().degree(tgt_id)
return self._get_graph().degree(src_id) + self._get_graph().degree(tgt_id)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
with self._storage_lock:
return self._get_graph().edges.get((source_node_id, target_node_id))
return self._get_graph().edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
with self._storage_lock:
if self._get_graph().has_node(source_node_id):
return list(self._get_graph().edges(source_node_id))
return None
if self._get_graph().has_node(source_node_id):
return list(self._get_graph().edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
with self._storage_lock:
self._get_graph().add_node(node_id, **node_data)
self._get_graph().add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
with self._storage_lock:
self._get_graph().add_edge(source_node_id, target_node_id, **edge_data)
self._get_graph().add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str) -> None:
with self._storage_lock:
if self._get_graph().has_node(node_id):
self._get_graph().remove_node(node_id)
logger.debug(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
if self._get_graph().has_node(node_id):
self._get_graph().remove_node(node_id)
logger.debug(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
async def embed_nodes(
self, algorithm: str
@@ -175,13 +144,12 @@ class NetworkXStorage(BaseGraphStorage):
# TODO: NOT USED
async def _node2vec_embed(self):
with self._storage_lock:
graph = self._get_graph()
embeddings, nodes = embed.node2vec_embed(
graph,
**self.global_config["node2vec_params"],
)
nodes_ids = [graph.nodes[node_id]["id"] for node_id in nodes]
graph = self._get_graph()
embeddings, nodes = embed.node2vec_embed(
graph,
**self.global_config["node2vec_params"],
)
nodes_ids = [graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids
def remove_nodes(self, nodes: list[str]):
@@ -190,11 +158,10 @@ class NetworkXStorage(BaseGraphStorage):
Args:
nodes: List of node IDs to be deleted
"""
with self._storage_lock:
graph = self._get_graph()
for node in nodes:
if graph.has_node(node):
graph.remove_node(node)
graph = self._get_graph()
for node in nodes:
if graph.has_node(node):
graph.remove_node(node)
def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
@@ -202,11 +169,10 @@ class NetworkXStorage(BaseGraphStorage):
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
with self._storage_lock:
graph = self._get_graph()
for source, target in edges:
if graph.has_edge(source, target):
graph.remove_edge(source, target)
graph = self._get_graph()
for source, target in edges:
if graph.has_edge(source, target):
graph.remove_edge(source, target)
async def get_all_labels(self) -> list[str]:
"""
@@ -214,10 +180,9 @@ class NetworkXStorage(BaseGraphStorage):
Returns:
[label1, label2, ...] # Alphabetically sorted label list
"""
with self._storage_lock:
labels = set()
for node in self._get_graph().nodes():
labels.add(str(node)) # Add node id as a label
labels = set()
for node in self._get_graph().nodes():
labels.add(str(node)) # Add node id as a label
# Return sorted list
return sorted(list(labels))
@@ -239,88 +204,87 @@ class NetworkXStorage(BaseGraphStorage):
seen_nodes = set()
seen_edges = set()
with self._storage_lock:
graph = self._get_graph()
graph = self._get_graph()
# Handle special case for "*" label
if node_label == "*":
# For "*", return the entire graph including all nodes and edges
subgraph = (
graph.copy()
) # Create a copy to avoid modifying the original graph
else:
# Find nodes with matching node id (partial match)
nodes_to_explore = []
for n, attr in graph.nodes(data=True):
if node_label in str(n): # Use partial matching
nodes_to_explore.append(n)
# Handle special case for "*" label
if node_label == "*":
# For "*", return the entire graph including all nodes and edges
subgraph = (
graph.copy()
) # Create a copy to avoid modifying the original graph
else:
# Find nodes with matching node id (partial match)
nodes_to_explore = []
for n, attr in graph.nodes(data=True):
if node_label in str(n): # Use partial matching
nodes_to_explore.append(n)
if not nodes_to_explore:
logger.warning(f"No nodes found with label {node_label}")
return result
if not nodes_to_explore:
logger.warning(f"No nodes found with label {node_label}")
return result
# Get subgraph using ego_graph
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
# Get subgraph using ego_graph
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
# Check if number of nodes exceeds max_graph_nodes
max_graph_nodes = 500
if len(subgraph.nodes()) > max_graph_nodes:
origin_nodes = len(subgraph.nodes())
node_degrees = dict(subgraph.degree())
top_nodes = sorted(
node_degrees.items(), key=lambda x: x[1], reverse=True
)[:max_graph_nodes]
top_node_ids = [node[0] for node in top_nodes]
# Create new subgraph with only top nodes
subgraph = subgraph.subgraph(top_node_ids)
logger.info(
f"Reduced graph from {origin_nodes} nodes to {max_graph_nodes} nodes (depth={max_depth})"
# Check if number of nodes exceeds max_graph_nodes
max_graph_nodes = 500
if len(subgraph.nodes()) > max_graph_nodes:
origin_nodes = len(subgraph.nodes())
node_degrees = dict(subgraph.degree())
top_nodes = sorted(
node_degrees.items(), key=lambda x: x[1], reverse=True
)[:max_graph_nodes]
top_node_ids = [node[0] for node in top_nodes]
# Create new subgraph with only top nodes
subgraph = subgraph.subgraph(top_node_ids)
logger.info(
f"Reduced graph from {origin_nodes} nodes to {max_graph_nodes} nodes (depth={max_depth})"
)
# Add nodes to result
for node in subgraph.nodes():
if str(node) in seen_nodes:
continue
node_data = dict(subgraph.nodes[node])
# Get entity_type as labels
labels = []
if "entity_type" in node_data:
if isinstance(node_data["entity_type"], list):
labels.extend(node_data["entity_type"])
else:
labels.append(node_data["entity_type"])
# Create node with properties
node_properties = {k: v for k, v in node_data.items()}
result.nodes.append(
KnowledgeGraphNode(
id=str(node), labels=[str(node)], properties=node_properties
)
)
seen_nodes.add(str(node))
# Add nodes to result
for node in subgraph.nodes():
if str(node) in seen_nodes:
continue
# Add edges to result
for edge in subgraph.edges():
source, target = edge
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
node_data = dict(subgraph.nodes[node])
# Get entity_type as labels
labels = []
if "entity_type" in node_data:
if isinstance(node_data["entity_type"], list):
labels.extend(node_data["entity_type"])
else:
labels.append(node_data["entity_type"])
edge_data = dict(subgraph.edges[edge])
# Create node with properties
node_properties = {k: v for k, v in node_data.items()}
result.nodes.append(
KnowledgeGraphNode(
id=str(node), labels=[str(node)], properties=node_properties
)
# Create edge with complete information
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source),
target=str(target),
properties=edge_data,
)
seen_nodes.add(str(node))
# Add edges to result
for edge in subgraph.edges():
source, target = edge
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
edge_data = dict(subgraph.edges[edge])
# Create edge with complete information
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source),
target=str(target),
properties=edge_data,
)
)
seen_edges.add(edge_id)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"