Merge pull request #3 from alazarchuk/fix-ollama-integration

Fix ollama integration
This commit is contained in:
Andrii Lazarchuk
2024-10-22 06:32:03 -07:00
committed by GitHub
4 changed files with 19 additions and 7 deletions

1
.gitignore vendored
View File

@@ -5,3 +5,4 @@ book.txt
lightrag-dev/ lightrag-dev/
.idea/ .idea/
dist/ dist/
.venv/

View File

@@ -1,4 +1,7 @@
import os import os
import logging
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
from lightrag import LightRAG, QueryParam from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding from lightrag.llm import ollama_model_complete, ollama_embedding
@@ -12,11 +15,15 @@ if not os.path.exists(WORKING_DIR):
rag = LightRAG( rag = LightRAG(
working_dir=WORKING_DIR, working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, llm_model_func=ollama_model_complete,
llm_model_name="your_model_name", llm_model_name="mistral:7b",
llm_model_max_async=2,
llm_model_kwargs={"host": "http://localhost:11434"},
embedding_func=EmbeddingFunc( embedding_func=EmbeddingFunc(
embedding_dim=768, embedding_dim=768,
max_token_size=8192, max_token_size=8192,
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"), func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
), ),
) )

View File

@@ -88,6 +88,7 @@ class LightRAG:
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it' llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768 llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16 llm_model_max_async: int = 16
llm_model_kwargs: dict = field(default_factory=dict)
# storage # storage
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
@@ -154,7 +155,7 @@ class LightRAG:
) )
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)( self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(self.llm_model_func, hashing_kv=self.llm_response_cache) partial(self.llm_model_func, hashing_kv=self.llm_response_cache, **self.llm_model_kwargs)
) )
def insert(self, string_or_strings): def insert(self, string_or_strings):

View File

@@ -222,8 +222,10 @@ async def ollama_model_if_cache(
) -> str: ) -> str:
kwargs.pop("max_tokens", None) kwargs.pop("max_tokens", None)
kwargs.pop("response_format", None) kwargs.pop("response_format", None)
host = kwargs.pop("host", None)
timeout = kwargs.pop("timeout", None)
ollama_client = ollama.AsyncClient() ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
messages = [] messages = []
if system_prompt: if system_prompt:
messages.append({"role": "system", "content": system_prompt}) messages.append({"role": "system", "content": system_prompt})
@@ -415,10 +417,11 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
return embeddings.detach().numpy() return embeddings.detach().numpy()
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray: async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
embed_text = [] embed_text = []
ollama_client = ollama.Client(**kwargs)
for text in texts: for text in texts:
data = ollama.embeddings(model=embed_model, prompt=text) data = ollama_client.embeddings(model=embed_model, prompt=text)
embed_text.append(data["embedding"]) embed_text.append(data["embedding"])
return embed_text return embed_text