101
lightrag/llm.py
101
lightrag/llm.py
@@ -7,7 +7,13 @@ import aiohttp
|
||||
import numpy as np
|
||||
import ollama
|
||||
|
||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout, AsyncAzureOpenAI
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
Timeout,
|
||||
AsyncAzureOpenAI,
|
||||
)
|
||||
|
||||
import base64
|
||||
import struct
|
||||
@@ -70,26 +76,31 @@ async def openai_complete_if_cache(
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
)
|
||||
async def azure_openai_complete_if_cache(model,
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
base_url=None,
|
||||
api_key=None,
|
||||
**kwargs):
|
||||
**kwargs,
|
||||
):
|
||||
if api_key:
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
||||
if base_url:
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
)
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages = []
|
||||
@@ -114,6 +125,7 @@ async def azure_openai_complete_if_cache(model,
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
class BedrockError(Exception):
|
||||
"""Generic error for issues related to Amazon Bedrock"""
|
||||
|
||||
@@ -205,8 +217,12 @@ async def bedrock_complete_if_cache(
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def initialize_hf_model(model_name):
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
||||
hf_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
hf_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
if hf_tokenizer.pad_token is None:
|
||||
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
||||
|
||||
@@ -328,8 +344,9 @@ async def gpt_4o_mini_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await azure_openai_complete_if_cache(
|
||||
"conversation-4o-mini",
|
||||
@@ -339,6 +356,7 @@ async def azure_openai_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def bedrock_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -418,9 +436,11 @@ async def azure_openai_embedding(
|
||||
if base_url:
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
@@ -440,35 +460,28 @@ async def siliconcloud_embedding(
|
||||
max_token_size: int = 512,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key and not api_key.startswith('Bearer '):
|
||||
api_key = 'Bearer ' + api_key
|
||||
if api_key and not api_key.startswith("Bearer "):
|
||||
api_key = "Bearer " + api_key
|
||||
|
||||
headers = {
|
||||
"Authorization": api_key,
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
||||
|
||||
truncate_texts = [text[0:max_token_size] for text in texts]
|
||||
|
||||
payload = {
|
||||
"model": model,
|
||||
"input": truncate_texts,
|
||||
"encoding_format": "base64"
|
||||
}
|
||||
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
||||
|
||||
base64_strings = []
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(base_url, headers=headers, json=payload) as response:
|
||||
content = await response.json()
|
||||
if 'code' in content:
|
||||
if "code" in content:
|
||||
raise ValueError(content)
|
||||
base64_strings = [item['embedding'] for item in content['data']]
|
||||
|
||||
base64_strings = [item["embedding"] for item in content["data"]]
|
||||
|
||||
embeddings = []
|
||||
for string in base64_strings:
|
||||
decode_bytes = base64.b64decode(string)
|
||||
n = len(decode_bytes) // 4
|
||||
float_array = struct.unpack('<' + 'f' * n, decode_bytes)
|
||||
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
||||
embeddings.append(float_array)
|
||||
return np.array(embeddings)
|
||||
|
||||
@@ -563,6 +576,7 @@ async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||
|
||||
return embed_text
|
||||
|
||||
|
||||
class Model(BaseModel):
|
||||
"""
|
||||
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
||||
@@ -580,14 +594,20 @@ class Model(BaseModel):
|
||||
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
||||
"""
|
||||
|
||||
gen_func: Callable[[Any], str] = Field(..., description="A function that generates the response from the llm. The response must be a string")
|
||||
kwargs: Dict[str, Any] = Field(..., description="The arguments to pass to the callable function. Eg. the api key, model name, etc")
|
||||
gen_func: Callable[[Any], str] = Field(
|
||||
...,
|
||||
description="A function that generates the response from the llm. The response must be a string",
|
||||
)
|
||||
kwargs: Dict[str, Any] = Field(
|
||||
...,
|
||||
description="The arguments to pass to the callable function. Eg. the api key, model name, etc",
|
||||
)
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class MultiModel():
|
||||
class MultiModel:
|
||||
"""
|
||||
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
||||
Could also be used for spliting across diffrent models or providers.
|
||||
@@ -611,26 +631,31 @@ class MultiModel():
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, models: List[Model]):
|
||||
self._models = models
|
||||
self._current_model = 0
|
||||
|
||||
|
||||
def _next_model(self):
|
||||
self._current_model = (self._current_model + 1) % len(self._models)
|
||||
return self._models[self._current_model]
|
||||
|
||||
async def llm_model_func(
|
||||
self,
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
kwargs.pop("model", None) # stop from overwriting the custom model name
|
||||
kwargs.pop("model", None) # stop from overwriting the custom model name
|
||||
next_model = self._next_model()
|
||||
args = dict(prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, **next_model.kwargs)
|
||||
|
||||
return await next_model.gen_func(
|
||||
**args
|
||||
args = dict(
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
**next_model.kwargs,
|
||||
)
|
||||
|
||||
return await next_model.gen_func(**args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
|
@@ -185,6 +185,7 @@ def save_data_to_file(data, file_name):
|
||||
with open(file_name, "w", encoding="utf-8") as f:
|
||||
json.dump(data, f, ensure_ascii=False, indent=4)
|
||||
|
||||
|
||||
def xml_to_json(xml_file):
|
||||
try:
|
||||
tree = ET.parse(xml_file)
|
||||
@@ -194,31 +195,42 @@ def xml_to_json(xml_file):
|
||||
print(f"Root element: {root.tag}")
|
||||
print(f"Root attributes: {root.attrib}")
|
||||
|
||||
data = {
|
||||
"nodes": [],
|
||||
"edges": []
|
||||
}
|
||||
data = {"nodes": [], "edges": []}
|
||||
|
||||
# Use namespace
|
||||
namespace = {'': 'http://graphml.graphdrawing.org/xmlns'}
|
||||
namespace = {"": "http://graphml.graphdrawing.org/xmlns"}
|
||||
|
||||
for node in root.findall('.//node', namespace):
|
||||
for node in root.findall(".//node", namespace):
|
||||
node_data = {
|
||||
"id": node.get('id').strip('"'),
|
||||
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"') if node.find("./data[@key='d0']", namespace) is not None else "",
|
||||
"description": node.find("./data[@key='d1']", namespace).text if node.find("./data[@key='d1']", namespace) is not None else "",
|
||||
"source_id": node.find("./data[@key='d2']", namespace).text if node.find("./data[@key='d2']", namespace) is not None else ""
|
||||
"id": node.get("id").strip('"'),
|
||||
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"')
|
||||
if node.find("./data[@key='d0']", namespace) is not None
|
||||
else "",
|
||||
"description": node.find("./data[@key='d1']", namespace).text
|
||||
if node.find("./data[@key='d1']", namespace) is not None
|
||||
else "",
|
||||
"source_id": node.find("./data[@key='d2']", namespace).text
|
||||
if node.find("./data[@key='d2']", namespace) is not None
|
||||
else "",
|
||||
}
|
||||
data["nodes"].append(node_data)
|
||||
|
||||
for edge in root.findall('.//edge', namespace):
|
||||
for edge in root.findall(".//edge", namespace):
|
||||
edge_data = {
|
||||
"source": edge.get('source').strip('"'),
|
||||
"target": edge.get('target').strip('"'),
|
||||
"weight": float(edge.find("./data[@key='d3']", namespace).text) if edge.find("./data[@key='d3']", namespace) is not None else 0.0,
|
||||
"description": edge.find("./data[@key='d4']", namespace).text if edge.find("./data[@key='d4']", namespace) is not None else "",
|
||||
"keywords": edge.find("./data[@key='d5']", namespace).text if edge.find("./data[@key='d5']", namespace) is not None else "",
|
||||
"source_id": edge.find("./data[@key='d6']", namespace).text if edge.find("./data[@key='d6']", namespace) is not None else ""
|
||||
"source": edge.get("source").strip('"'),
|
||||
"target": edge.get("target").strip('"'),
|
||||
"weight": float(edge.find("./data[@key='d3']", namespace).text)
|
||||
if edge.find("./data[@key='d3']", namespace) is not None
|
||||
else 0.0,
|
||||
"description": edge.find("./data[@key='d4']", namespace).text
|
||||
if edge.find("./data[@key='d4']", namespace) is not None
|
||||
else "",
|
||||
"keywords": edge.find("./data[@key='d5']", namespace).text
|
||||
if edge.find("./data[@key='d5']", namespace) is not None
|
||||
else "",
|
||||
"source_id": edge.find("./data[@key='d6']", namespace).text
|
||||
if edge.find("./data[@key='d6']", namespace) is not None
|
||||
else "",
|
||||
}
|
||||
data["edges"].append(edge_data)
|
||||
|
||||
|
Reference in New Issue
Block a user