update do_preprocess
This commit is contained in:
@@ -286,7 +286,9 @@ async def hf_model_if_cache(
|
||||
output = hf_model.generate(
|
||||
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
||||
)
|
||||
response_text = hf_tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
|
||||
response_text = hf_tokenizer.decode(
|
||||
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
||||
)
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}})
|
||||
return response_text
|
||||
@@ -323,19 +325,38 @@ async def ollama_model_if_cache(
|
||||
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def initialize_lmdeploy_pipeline(model, tp=1, chat_template=None, log_level='WARNING', model_format='hf', quant_policy=0):
|
||||
def initialize_lmdeploy_pipeline(
|
||||
model,
|
||||
tp=1,
|
||||
chat_template=None,
|
||||
log_level="WARNING",
|
||||
model_format="hf",
|
||||
quant_policy=0,
|
||||
):
|
||||
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
||||
|
||||
lmdeploy_pipe = pipeline(
|
||||
model_path=model,
|
||||
backend_config=TurbomindEngineConfig(tp=tp, model_format=model_format, quant_policy=quant_policy),
|
||||
chat_template_config=ChatTemplateConfig(model_name=chat_template) if chat_template else None,
|
||||
log_level='WARNING')
|
||||
backend_config=TurbomindEngineConfig(
|
||||
tp=tp, model_format=model_format, quant_policy=quant_policy
|
||||
),
|
||||
chat_template_config=ChatTemplateConfig(model_name=chat_template)
|
||||
if chat_template
|
||||
else None,
|
||||
log_level="WARNING",
|
||||
)
|
||||
return lmdeploy_pipe
|
||||
|
||||
|
||||
async def lmdeploy_model_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[],
|
||||
chat_template=None, model_format='hf',quant_policy=0, **kwargs
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
chat_template=None,
|
||||
model_format="hf",
|
||||
quant_policy=0,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
"""
|
||||
Args:
|
||||
@@ -361,29 +382,30 @@ async def lmdeploy_model_if_cache(
|
||||
do_preprocess (bool): whether pre-process the messages. Default to
|
||||
True, which means chat_template will be applied.
|
||||
skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be False.
|
||||
in the decoding. Default to be True.
|
||||
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
|
||||
Default to be False, which means greedy decoding will be applied.
|
||||
"""
|
||||
try:
|
||||
import lmdeploy
|
||||
from lmdeploy import version_info, GenerationConfig
|
||||
except:
|
||||
except Exception:
|
||||
raise ImportError("Please install lmdeploy before intialize lmdeploy backend.")
|
||||
|
||||
kwargs.pop("response_format", None)
|
||||
max_new_tokens = kwargs.pop("max_tokens", 512)
|
||||
tp = kwargs.pop('tp', 1)
|
||||
skip_special_tokens = kwargs.pop('skip_special_tokens', False)
|
||||
do_preprocess = kwargs.pop('do_preprocess', True)
|
||||
do_sample = kwargs.pop('do_sample', False)
|
||||
tp = kwargs.pop("tp", 1)
|
||||
skip_special_tokens = kwargs.pop("skip_special_tokens", True)
|
||||
do_preprocess = kwargs.pop("do_preprocess", True)
|
||||
do_sample = kwargs.pop("do_sample", False)
|
||||
gen_params = kwargs
|
||||
|
||||
version = version_info
|
||||
if do_sample is not None and version < (0, 6, 0):
|
||||
raise RuntimeError(
|
||||
'`do_sample` parameter is not supported by lmdeploy until '
|
||||
f'v0.6.0, but currently using lmdeloy {lmdeploy.__version__}')
|
||||
"`do_sample` parameter is not supported by lmdeploy until "
|
||||
f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}"
|
||||
)
|
||||
else:
|
||||
do_sample = True
|
||||
gen_params.update(do_sample=do_sample)
|
||||
@@ -394,7 +416,8 @@ async def lmdeploy_model_if_cache(
|
||||
chat_template=chat_template,
|
||||
model_format=model_format,
|
||||
quant_policy=quant_policy,
|
||||
log_level='WARNING')
|
||||
log_level="WARNING",
|
||||
)
|
||||
|
||||
messages = []
|
||||
if system_prompt:
|
||||
@@ -410,11 +433,19 @@ async def lmdeploy_model_if_cache(
|
||||
return if_cache_return["return"]
|
||||
|
||||
gen_config = GenerationConfig(
|
||||
skip_special_tokens=skip_special_tokens, max_new_tokens=max_new_tokens, **gen_params)
|
||||
skip_special_tokens=skip_special_tokens,
|
||||
max_new_tokens=max_new_tokens,
|
||||
**gen_params,
|
||||
)
|
||||
|
||||
response = ""
|
||||
async for res in lmdeploy_pipe.generate(messages, gen_config=gen_config,
|
||||
do_preprocess=do_preprocess, stream_response=False, session_id=1):
|
||||
async for res in lmdeploy_pipe.generate(
|
||||
messages,
|
||||
gen_config=gen_config,
|
||||
do_preprocess=do_preprocess,
|
||||
stream_response=False,
|
||||
session_id=1,
|
||||
):
|
||||
response += res.response
|
||||
|
||||
if hashing_kv is not None:
|
||||
|
Reference in New Issue
Block a user