Merge pull request #969 from danielaskdd/add-multi-worker-support

Add multi workers support for API Server
This commit is contained in:
Yannick Stephan
2025-03-02 17:47:00 +01:00
committed by GitHub
20 changed files with 1927 additions and 455 deletions

View File

@@ -45,7 +45,6 @@ from .utils import (
lazy_external_import,
limit_async_func_call,
logger,
set_logger,
)
from .types import KnowledgeGraph
from dotenv import load_dotenv
@@ -268,9 +267,14 @@ class LightRAG:
def __post_init__(self):
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
set_logger(self.log_file_path, self.log_level)
logger.info(f"Logger initialized for working directory: {self.working_dir}")
from lightrag.kg.shared_storage import (
initialize_share_data,
)
initialize_share_data()
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
@@ -692,117 +696,221 @@ class LightRAG:
3. Process each chunk for entity and relation extraction
4. Update the document status
"""
# 1. Get all pending, failed, and abnormally terminated processing documents.
# Run the asynchronous status retrievals in parallel using asyncio.gather
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
from lightrag.kg.shared_storage import (
get_namespace_data,
get_pipeline_status_lock,
)
to_process_docs: dict[str, DocProcessingStatus] = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
# Get pipeline status shared data and lock
pipeline_status = await get_namespace_data("pipeline_status")
pipeline_status_lock = get_pipeline_status_lock()
if not to_process_docs:
logger.info("All documents have been processed or are duplicates")
return
# Check if another process is already processing the queue
async with pipeline_status_lock:
# Ensure only one worker is processing documents
if not pipeline_status.get("busy", False):
# 先检查是否有需要处理的文档
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
to_process_docs: dict[str, DocProcessingStatus] = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
logger.info(f"Number of batches to process: {len(docs_batches)}.")
# 如果没有需要处理的文档,直接返回,保留 pipeline_status 中的内容不变
if not to_process_docs:
logger.info("No documents to process")
return
batches: list[Any] = []
# 3. iterate over batches
for batch_idx, docs_batch in enumerate(docs_batches):
async def batch(
batch_idx: int,
docs_batch: list[tuple[str, DocProcessingStatus]],
size_batch: int,
) -> None:
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
# 4. iterate over batch
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
}
for dp in self.chunking_func(
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
self.tiktoken_model_name,
)
# 有文档需要处理,更新 pipeline_status
pipeline_status.update(
{
"busy": True,
"job_name": "indexing files",
"job_start": datetime.now().isoformat(),
"docs": 0,
"batchs": 0,
"cur_batch": 0,
"request_pending": False, # Clear any previous request
"latest_message": "",
}
# Process document (text chunks and full docs) in parallel
tasks = [
self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSING,
"updated_at": datetime.now().isoformat(),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
}
}
),
self.chunks_vdb.upsert(chunks),
self._process_entity_relation_graph(chunks),
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
),
self.text_chunks.upsert(chunks),
]
try:
await asyncio.gather(*tasks)
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
except Exception as e:
logger.error(f"Failed to process document {doc_id}: {str(e)}")
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
continue
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
)
# Cleaning history_messages without breaking it as a shared list object
del pipeline_status["history_messages"][:]
else:
# Another process is busy, just set request flag and return
pipeline_status["request_pending"] = True
logger.info(
"Another process is already processing the document queue. Request queued."
)
return
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
try:
# Process documents until no more documents or requests
while True:
if not to_process_docs:
log_message = "All documents have been processed or are duplicates"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
break
await asyncio.gather(*batches)
await self._insert_done()
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
log_message = f"Number of batches to process: {len(docs_batches)}."
logger.info(log_message)
# Update pipeline status with current batch information
pipeline_status["docs"] += len(to_process_docs)
pipeline_status["batchs"] += len(docs_batches)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
batches: list[Any] = []
# 3. iterate over batches
for batch_idx, docs_batch in enumerate(docs_batches):
# Update current batch in pipeline status (directly, as it's atomic)
pipeline_status["cur_batch"] += 1
async def batch(
batch_idx: int,
docs_batch: list[tuple[str, DocProcessingStatus]],
size_batch: int,
) -> None:
log_message = (
f"Start processing batch {batch_idx + 1} of {size_batch}."
)
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# 4. iterate over batch
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
}
for dp in self.chunking_func(
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
self.tiktoken_model_name,
)
}
# Process document (text chunks and full docs) in parallel
tasks = [
self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSING,
"updated_at": datetime.now().isoformat(),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
}
}
),
self.chunks_vdb.upsert(chunks),
self._process_entity_relation_graph(chunks),
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
),
self.text_chunks.upsert(chunks),
]
try:
await asyncio.gather(*tasks)
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
except Exception as e:
logger.error(
f"Failed to process document {doc_id}: {str(e)}"
)
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
continue
log_message = (
f"Completed batch {batch_idx + 1} of {len(docs_batches)}."
)
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
await asyncio.gather(*batches)
await self._insert_done()
# Check if there's a pending request to process more documents (with lock)
has_pending_request = False
async with pipeline_status_lock:
has_pending_request = pipeline_status.get("request_pending", False)
if has_pending_request:
# Clear the request flag before checking for more documents
pipeline_status["request_pending"] = False
if not has_pending_request:
break
log_message = "Processing additional documents due to pending request"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# 获取新的待处理文档
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
finally:
log_message = "Document processing pipeline completed"
logger.info(log_message)
# Always reset busy status when done or if an exception occurs (with lock)
async with pipeline_status_lock:
pipeline_status["busy"] = False
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
try:
@@ -833,7 +941,16 @@ class LightRAG:
if storage_inst is not None
]
await asyncio.gather(*tasks)
logger.info("All Insert done")
log_message = "All Insert done"
logger.info(log_message)
# 获取 pipeline_status 并更新 latest_message 和 history_messages
from lightrag.kg.shared_storage import get_namespace_data
pipeline_status = await get_namespace_data("pipeline_status")
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
def insert_custom_kg(self, custom_kg: dict[str, Any]) -> None:
loop = always_get_an_event_loop()