chore: added pre-commit-hooks and ruff formatting for commit-hooks

This commit is contained in:
Sanketh Kumar
2024-10-19 09:43:17 +05:30
parent 99bd644bf7
commit 32464fab4e
26 changed files with 635 additions and 393 deletions

View File

@@ -1,9 +1,7 @@
import os
import copy
import json
import botocore
import aioboto3
import botocore.errorfactory
import numpy as np
import ollama
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
@@ -13,24 +11,34 @@ from tenacity import (
wait_exponential,
retry_if_exception_type,
)
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from .base import BaseKVStorage
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
import copy
os.environ["TOKENIZERS_PARALLELISM"] = "false"
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs
model,
prompt,
system_prompt=None,
history_messages=[],
base_url=None,
api_key=None,
**kwargs,
) -> str:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
@@ -64,43 +72,56 @@ class BedrockError(Exception):
retry=retry_if_exception_type((BedrockError)),
)
async def bedrock_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[],
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
model,
prompt,
system_prompt=None,
history_messages=[],
aws_access_key_id=None,
aws_secret_access_key=None,
aws_session_token=None,
**kwargs,
) -> str:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
"AWS_ACCESS_KEY_ID", aws_access_key_id
)
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
)
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
"AWS_SESSION_TOKEN", aws_session_token
)
# Fix message history format
messages = []
for history_message in history_messages:
message = copy.copy(history_message)
message['content'] = [{'text': message['content']}]
message["content"] = [{"text": message["content"]}]
messages.append(message)
# Add user prompt
messages.append({'role': "user", 'content': [{'text': prompt}]})
messages.append({"role": "user", "content": [{"text": prompt}]})
# Initialize Converse API arguments
args = {
'modelId': model,
'messages': messages
}
args = {"modelId": model, "messages": messages}
# Define system prompt
if system_prompt:
args['system'] = [{'text': system_prompt}]
args["system"] = [{"text": system_prompt}]
# Map and set up inference parameters
inference_params_map = {
'max_tokens': "maxTokens",
'top_p': "topP",
'stop_sequences': "stopSequences"
"max_tokens": "maxTokens",
"top_p": "topP",
"stop_sequences": "stopSequences",
}
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
args['inferenceConfig'] = {}
if inference_params := list(
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
):
args["inferenceConfig"] = {}
for param in inference_params:
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
args["inferenceConfig"][inference_params_map.get(param, param)] = (
kwargs.pop(param)
)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
if hashing_kv is not None:
@@ -112,31 +133,33 @@ async def bedrock_complete_if_cache(
# Call model via Converse API
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
try:
response = await bedrock_async_client.converse(**args, **kwargs)
except Exception as e:
raise BedrockError(e)
if hashing_kv is not None:
await hashing_kv.upsert({
args_hash: {
'return': response['output']['message']['content'][0]['text'],
'model': model
await hashing_kv.upsert(
{
args_hash: {
"return": response["output"]["message"]["content"][0]["text"],
"model": model,
}
}
})
)
return response["output"]["message"]["content"][0]["text"]
return response['output']['message']['content'][0]['text']
async def hf_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = model
hf_tokenizer = AutoTokenizer.from_pretrained(model_name,device_map = 'auto')
if hf_tokenizer.pad_token == None:
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto")
if hf_tokenizer.pad_token is None:
# print("use eos token")
hf_tokenizer.pad_token = hf_tokenizer.eos_token
hf_model = AutoModelForCausalLM.from_pretrained(model_name,device_map = 'auto')
hf_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
@@ -149,30 +172,51 @@ async def hf_model_if_cache(
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
input_prompt = ''
input_prompt = ""
try:
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
input_prompt = hf_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
except Exception:
try:
ori_message = copy.deepcopy(messages)
if messages[0]['role'] == "system":
messages[1]['content'] = "<system>" + messages[0]['content'] + "</system>\n" + messages[1]['content']
if messages[0]["role"] == "system":
messages[1]["content"] = (
"<system>"
+ messages[0]["content"]
+ "</system>\n"
+ messages[1]["content"]
)
messages = messages[1:]
input_prompt = hf_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
input_prompt = hf_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
except Exception:
len_message = len(ori_message)
for msgid in range(len_message):
input_prompt =input_prompt+ '<'+ori_message[msgid]['role']+'>'+ori_message[msgid]['content']+'</'+ori_message[msgid]['role']+'>\n'
input_ids = hf_tokenizer(input_prompt, return_tensors='pt', padding=True, truncation=True).to("cuda")
output = hf_model.generate(**input_ids, max_new_tokens=200, num_return_sequences=1,early_stopping = True)
input_prompt = (
input_prompt
+ "<"
+ ori_message[msgid]["role"]
+ ">"
+ ori_message[msgid]["content"]
+ "</"
+ ori_message[msgid]["role"]
+ ">\n"
)
input_ids = hf_tokenizer(
input_prompt, return_tensors="pt", padding=True, truncation=True
).to("cuda")
output = hf_model.generate(
**input_ids, max_new_tokens=200, num_return_sequences=1, early_stopping=True
)
response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response_text, "model": model}}
)
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}})
return response_text
async def ollama_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@@ -202,6 +246,7 @@ async def ollama_model_if_cache(
return result
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@@ -241,7 +286,7 @@ async def bedrock_complete(
async def hf_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await hf_model_if_cache(
model_name,
prompt,
@@ -250,10 +295,11 @@ async def hf_model_complete(
**kwargs,
)
async def ollama_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await ollama_model_if_cache(
model_name,
prompt,
@@ -262,17 +308,25 @@ async def ollama_model_complete(
**kwargs,
)
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None) -> np.ndarray:
async def openai_embedding(
texts: list[str],
model: str = "text-embedding-3-small",
base_url: str = None,
api_key: str = None,
) -> np.ndarray:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
openai_async_client = (
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="float"
)
@@ -286,28 +340,37 @@ async def openai_embedding(texts: list[str], model: str = "text-embedding-3-smal
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
# )
async def bedrock_embedding(
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
texts: list[str],
model: str = "amazon.titan-embed-text-v2:0",
aws_access_key_id=None,
aws_secret_access_key=None,
aws_session_token=None,
) -> np.ndarray:
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
"AWS_ACCESS_KEY_ID", aws_access_key_id
)
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
)
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
"AWS_SESSION_TOKEN", aws_session_token
)
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
if (model_provider := model.split(".")[0]) == "amazon":
embed_texts = []
for text in texts:
if "v2" in model:
body = json.dumps({
'inputText': text,
# 'dimensions': embedding_dim,
'embeddingTypes': ["float"]
})
body = json.dumps(
{
"inputText": text,
# 'dimensions': embedding_dim,
"embeddingTypes": ["float"],
}
)
elif "v1" in model:
body = json.dumps({
'inputText': text
})
body = json.dumps({"inputText": text})
else:
raise ValueError(f"Model {model} is not supported!")
@@ -315,29 +378,27 @@ async def bedrock_embedding(
modelId=model,
body=body,
accept="application/json",
contentType="application/json"
contentType="application/json",
)
response_body = await response.get('body').json()
response_body = await response.get("body").json()
embed_texts.append(response_body['embedding'])
embed_texts.append(response_body["embedding"])
elif model_provider == "cohere":
body = json.dumps({
'texts': texts,
'input_type': "search_document",
'truncate': "NONE"
})
body = json.dumps(
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
)
response = await bedrock_async_client.invoke_model(
model=model,
body=body,
accept="application/json",
contentType="application/json"
contentType="application/json",
)
response_body = json.loads(response.get('body').read())
response_body = json.loads(response.get("body").read())
embed_texts = response_body['embeddings']
embed_texts = response_body["embeddings"]
else:
raise ValueError(f"Model provider '{model_provider}' is not supported!")
@@ -345,12 +406,15 @@ async def bedrock_embedding(
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
input_ids = tokenizer(
texts, return_tensors="pt", padding=True, truncation=True
).input_ids
with torch.no_grad():
outputs = embed_model(input_ids)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.detach().numpy()
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
embed_text = []
for text in texts:
@@ -359,11 +423,12 @@ async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
return embed_text
if __name__ == "__main__":
import asyncio
async def main():
result = await gpt_4o_mini_complete('How are you?')
result = await gpt_4o_mini_complete("How are you?")
print(result)
asyncio.run(main())