chore: added pre-commit-hooks and ruff formatting for commit-hooks
This commit is contained in:
@@ -3,11 +3,11 @@ import json
|
||||
import glob
|
||||
import argparse
|
||||
|
||||
def extract_unique_contexts(input_directory, output_directory):
|
||||
|
||||
def extract_unique_contexts(input_directory, output_directory):
|
||||
os.makedirs(output_directory, exist_ok=True)
|
||||
|
||||
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
|
||||
jsonl_files = glob.glob(os.path.join(input_directory, "*.jsonl"))
|
||||
print(f"Found {len(jsonl_files)} JSONL files.")
|
||||
|
||||
for file_path in jsonl_files:
|
||||
@@ -21,18 +21,20 @@ def extract_unique_contexts(input_directory, output_directory):
|
||||
print(f"Processing file: {filename}")
|
||||
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as infile:
|
||||
with open(file_path, "r", encoding="utf-8") as infile:
|
||||
for line_number, line in enumerate(infile, start=1):
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
try:
|
||||
json_obj = json.loads(line)
|
||||
context = json_obj.get('context')
|
||||
context = json_obj.get("context")
|
||||
if context and context not in unique_contexts_dict:
|
||||
unique_contexts_dict[context] = None
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
|
||||
print(
|
||||
f"JSON decoding error in file {filename} at line {line_number}: {e}"
|
||||
)
|
||||
except FileNotFoundError:
|
||||
print(f"File not found: {filename}")
|
||||
continue
|
||||
@@ -41,10 +43,12 @@ def extract_unique_contexts(input_directory, output_directory):
|
||||
continue
|
||||
|
||||
unique_contexts_list = list(unique_contexts_dict.keys())
|
||||
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
|
||||
print(
|
||||
f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}."
|
||||
)
|
||||
|
||||
try:
|
||||
with open(output_path, 'w', encoding='utf-8') as outfile:
|
||||
with open(output_path, "w", encoding="utf-8") as outfile:
|
||||
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
|
||||
print(f"Unique `context` entries have been saved to: {output_filename}")
|
||||
except Exception as e:
|
||||
@@ -55,8 +59,10 @@ def extract_unique_contexts(input_directory, output_directory):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-i', '--input_dir', type=str, default='../datasets')
|
||||
parser.add_argument('-o', '--output_dir', type=str, default='../datasets/unique_contexts')
|
||||
parser.add_argument("-i", "--input_dir", type=str, default="../datasets")
|
||||
parser.add_argument(
|
||||
"-o", "--output_dir", type=str, default="../datasets/unique_contexts"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
@@ -4,10 +4,11 @@ import time
|
||||
|
||||
from lightrag import LightRAG
|
||||
|
||||
|
||||
def insert_text(rag, file_path):
|
||||
with open(file_path, mode='r') as f:
|
||||
with open(file_path, mode="r") as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
|
||||
retries = 0
|
||||
max_retries = 3
|
||||
while retries < max_retries:
|
||||
@@ -21,6 +22,7 @@ def insert_text(rag, file_path):
|
||||
if retries == max_retries:
|
||||
print("Insertion failed after exceeding the maximum number of retries")
|
||||
|
||||
|
||||
cls = "agriculture"
|
||||
WORKING_DIR = "../{cls}"
|
||||
|
||||
@@ -29,4 +31,4 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
||||
|
@@ -7,6 +7,7 @@ from lightrag import LightRAG
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
|
||||
|
||||
## For Upstage API
|
||||
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry
|
||||
async def llm_model_func(
|
||||
@@ -19,22 +20,26 @@ async def llm_model_func(
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
)
|
||||
|
||||
|
||||
## /For Upstage API
|
||||
|
||||
|
||||
def insert_text(rag, file_path):
|
||||
with open(file_path, mode='r') as f:
|
||||
with open(file_path, mode="r") as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
|
||||
retries = 0
|
||||
max_retries = 3
|
||||
while retries < max_retries:
|
||||
@@ -48,19 +53,19 @@ def insert_text(rag, file_path):
|
||||
if retries == max_retries:
|
||||
print("Insertion failed after exceeding the maximum number of retries")
|
||||
|
||||
|
||||
cls = "mix"
|
||||
WORKING_DIR = f"../{cls}"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
max_token_size=8192,
|
||||
func=embedding_func
|
||||
)
|
||||
)
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
||||
|
@@ -1,8 +1,8 @@
|
||||
import os
|
||||
import json
|
||||
from openai import OpenAI
|
||||
from transformers import GPT2Tokenizer
|
||||
|
||||
|
||||
def openai_complete_if_cache(
|
||||
model="gpt-4o", prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -19,24 +19,26 @@ def openai_complete_if_cache(
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
||||
|
||||
|
||||
def get_summary(context, tot_tokens=2000):
|
||||
tokens = tokenizer.tokenize(context)
|
||||
half_tokens = tot_tokens // 2
|
||||
|
||||
start_tokens = tokens[1000:1000 + half_tokens]
|
||||
end_tokens = tokens[-(1000 + half_tokens):1000]
|
||||
start_tokens = tokens[1000 : 1000 + half_tokens]
|
||||
end_tokens = tokens[-(1000 + half_tokens) : 1000]
|
||||
|
||||
summary_tokens = start_tokens + end_tokens
|
||||
summary = tokenizer.convert_tokens_to_string(summary_tokens)
|
||||
|
||||
|
||||
return summary
|
||||
|
||||
|
||||
clses = ['agriculture']
|
||||
clses = ["agriculture"]
|
||||
for cls in clses:
|
||||
with open(f'../datasets/unique_contexts/{cls}_unique_contexts.json', mode='r') as f:
|
||||
with open(f"../datasets/unique_contexts/{cls}_unique_contexts.json", mode="r") as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
summaries = [get_summary(context) for context in unique_contexts]
|
||||
@@ -67,10 +69,10 @@ for cls in clses:
|
||||
...
|
||||
"""
|
||||
|
||||
result = openai_complete_if_cache(model='gpt-4o', prompt=prompt)
|
||||
result = openai_complete_if_cache(model="gpt-4o", prompt=prompt)
|
||||
|
||||
file_path = f"../datasets/questions/{cls}_questions.txt"
|
||||
with open(file_path, "w") as file:
|
||||
file.write(result)
|
||||
|
||||
print(f"{cls}_questions written to {file_path}")
|
||||
print(f"{cls}_questions written to {file_path}")
|
||||
|
@@ -4,16 +4,18 @@ import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from tqdm import tqdm
|
||||
|
||||
def extract_queries(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
data = f.read()
|
||||
|
||||
data = data.replace('**', '')
|
||||
|
||||
queries = re.findall(r'- Question \d+: (.+)', data)
|
||||
def extract_queries(file_path):
|
||||
with open(file_path, "r") as f:
|
||||
data = f.read()
|
||||
|
||||
data = data.replace("**", "")
|
||||
|
||||
queries = re.findall(r"- Question \d+: (.+)", data)
|
||||
|
||||
return queries
|
||||
|
||||
|
||||
async def process_query(query_text, rag_instance, query_param):
|
||||
try:
|
||||
result, context = await rag_instance.aquery(query_text, param=query_param)
|
||||
@@ -21,6 +23,7 @@ async def process_query(query_text, rag_instance, query_param):
|
||||
except Exception as e:
|
||||
return None, {"query": query_text, "error": str(e)}
|
||||
|
||||
|
||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
@@ -29,15 +32,22 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
asyncio.set_event_loop(loop)
|
||||
return loop
|
||||
|
||||
def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file, error_file):
|
||||
|
||||
def run_queries_and_save_to_json(
|
||||
queries, rag_instance, query_param, output_file, error_file
|
||||
):
|
||||
loop = always_get_an_event_loop()
|
||||
|
||||
with open(output_file, 'a', encoding='utf-8') as result_file, open(error_file, 'a', encoding='utf-8') as err_file:
|
||||
with open(output_file, "a", encoding="utf-8") as result_file, open(
|
||||
error_file, "a", encoding="utf-8"
|
||||
) as err_file:
|
||||
result_file.write("[\n")
|
||||
first_entry = True
|
||||
|
||||
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
||||
result, error = loop.run_until_complete(process_query(query_text, rag_instance, query_param))
|
||||
result, error = loop.run_until_complete(
|
||||
process_query(query_text, rag_instance, query_param)
|
||||
)
|
||||
|
||||
if result:
|
||||
if not first_entry:
|
||||
@@ -50,6 +60,7 @@ def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file
|
||||
|
||||
result_file.write("\n]")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cls = "agriculture"
|
||||
mode = "hybrid"
|
||||
@@ -59,4 +70,6 @@ if __name__ == "__main__":
|
||||
query_param = QueryParam(mode=mode)
|
||||
|
||||
queries = extract_queries(f"../datasets/questions/{cls}_questions.txt")
|
||||
run_queries_and_save_to_json(queries, rag, query_param, f"{cls}_result.json", f"{cls}_errors.json")
|
||||
run_queries_and_save_to_json(
|
||||
queries, rag, query_param, f"{cls}_result.json", f"{cls}_errors.json"
|
||||
)
|
||||
|
@@ -8,6 +8,7 @@ from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
|
||||
## For Upstage API
|
||||
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry
|
||||
async def llm_model_func(
|
||||
@@ -20,28 +21,33 @@ async def llm_model_func(
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
)
|
||||
|
||||
|
||||
## /For Upstage API
|
||||
|
||||
def extract_queries(file_path):
|
||||
with open(file_path, 'r') as f:
|
||||
data = f.read()
|
||||
|
||||
data = data.replace('**', '')
|
||||
|
||||
queries = re.findall(r'- Question \d+: (.+)', data)
|
||||
def extract_queries(file_path):
|
||||
with open(file_path, "r") as f:
|
||||
data = f.read()
|
||||
|
||||
data = data.replace("**", "")
|
||||
|
||||
queries = re.findall(r"- Question \d+: (.+)", data)
|
||||
|
||||
return queries
|
||||
|
||||
|
||||
async def process_query(query_text, rag_instance, query_param):
|
||||
try:
|
||||
result, context = await rag_instance.aquery(query_text, param=query_param)
|
||||
@@ -49,6 +55,7 @@ async def process_query(query_text, rag_instance, query_param):
|
||||
except Exception as e:
|
||||
return None, {"query": query_text, "error": str(e)}
|
||||
|
||||
|
||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
@@ -57,15 +64,22 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
asyncio.set_event_loop(loop)
|
||||
return loop
|
||||
|
||||
def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file, error_file):
|
||||
|
||||
def run_queries_and_save_to_json(
|
||||
queries, rag_instance, query_param, output_file, error_file
|
||||
):
|
||||
loop = always_get_an_event_loop()
|
||||
|
||||
with open(output_file, 'a', encoding='utf-8') as result_file, open(error_file, 'a', encoding='utf-8') as err_file:
|
||||
with open(output_file, "a", encoding="utf-8") as result_file, open(
|
||||
error_file, "a", encoding="utf-8"
|
||||
) as err_file:
|
||||
result_file.write("[\n")
|
||||
first_entry = True
|
||||
|
||||
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
||||
result, error = loop.run_until_complete(process_query(query_text, rag_instance, query_param))
|
||||
result, error = loop.run_until_complete(
|
||||
process_query(query_text, rag_instance, query_param)
|
||||
)
|
||||
|
||||
if result:
|
||||
if not first_entry:
|
||||
@@ -78,22 +92,24 @@ def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file
|
||||
|
||||
result_file.write("\n]")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cls = "mix"
|
||||
mode = "hybrid"
|
||||
WORKING_DIR = f"../{cls}"
|
||||
|
||||
rag = LightRAG(working_dir=WORKING_DIR)
|
||||
rag = LightRAG(working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
max_token_size=8192,
|
||||
func=embedding_func
|
||||
)
|
||||
)
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
query_param = QueryParam(mode=mode)
|
||||
|
||||
base_dir='../datasets/questions'
|
||||
base_dir = "../datasets/questions"
|
||||
queries = extract_queries(f"{base_dir}/{cls}_questions.txt")
|
||||
run_queries_and_save_to_json(queries, rag, query_param, f"{base_dir}/result.json", f"{base_dir}/errors.json")
|
||||
run_queries_and_save_to_json(
|
||||
queries, rag, query_param, f"{base_dir}/result.json", f"{base_dir}/errors.json"
|
||||
)
|
||||
|
Reference in New Issue
Block a user