Separated llms from the main llm.py file and fixed some deprication bugs
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
|
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from typing import Optional
|
||||
import asyncio
|
||||
@@ -38,7 +38,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -9,7 +9,7 @@ from typing import Optional
|
||||
import os
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embed
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
import nest_asyncio
|
||||
|
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from typing import Optional
|
||||
@@ -48,7 +48,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
@@ -13,7 +13,7 @@ from pathlib import Path
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -64,7 +64,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
api_key=APIKEY,
|
||||
|
@@ -6,7 +6,7 @@ import os
|
||||
import logging
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import bedrock_complete, bedrock_embedding
|
||||
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||
@@ -20,7 +20,7 @@ rag = LightRAG(
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embedding
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
|
||||
),
|
||||
)
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import hf_model_complete, hf_embedding
|
||||
from lightrag.llm.hf import hf_model_complete, hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
@@ -17,7 +17,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
|
@@ -1,13 +1,14 @@
|
||||
import numpy as np
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm import jina_embedding, openai_complete_if_cache
|
||||
from lightrag.llm.jina import jina_embed
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await jina_embedding(texts, api_key="YourJinaAPIKey")
|
||||
return await jina_embed(texts, api_key="YourJinaAPIKey")
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import lmdeploy_model_if_cache, hf_embedding
|
||||
from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
|
||||
from lightrag.llm.hf import hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
@@ -42,7 +43,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
|
@@ -3,7 +3,7 @@ import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import (
|
||||
openai_complete_if_cache,
|
||||
nvidia_openai_embedding,
|
||||
nvidia_openai_embed,
|
||||
)
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
@@ -47,7 +47,7 @@ nvidia_embed_model = "nvidia/nv-embedqa-e5-v5"
|
||||
|
||||
|
||||
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await nvidia_openai_embedding(
|
||||
return await nvidia_openai_embed(
|
||||
texts,
|
||||
model=nvidia_embed_model, # maximum 512 token
|
||||
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
||||
@@ -60,7 +60,7 @@ async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
||||
|
||||
|
||||
async def query_embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await nvidia_openai_embedding(
|
||||
return await nvidia_openai_embed(
|
||||
texts,
|
||||
model=nvidia_embed_model, # maximum 512 token
|
||||
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
||||
|
@@ -4,7 +4,7 @@ import logging
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens_age"
|
||||
@@ -32,7 +32,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
import inspect
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
@@ -23,7 +23,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -10,7 +10,7 @@ import os
|
||||
# logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens_gremlin"
|
||||
@@ -41,7 +41,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embed
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# WorkingDir
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -26,7 +26,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -26,7 +26,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import inspect
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import openai_complete, openai_embedding
|
||||
from lightrag.llm import openai_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.lightrag import always_get_an_event_loop
|
||||
from lightrag import QueryParam
|
||||
@@ -24,7 +24,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embedding(
|
||||
func=lambda texts: openai_embed(
|
||||
texts=texts,
|
||||
model="text-embedding-bge-m3",
|
||||
base_url="http://127.0.0.1:1234/v1",
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embed, openai_complete_if_cache
|
||||
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# WorkingDir
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
from pathlib import Path
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
@@ -42,7 +42,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDMODEL,
|
||||
api_key=APIKEY,
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, siliconcloud_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
from lightrag.llm.siliconcloud import siliconcloud_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
|
@@ -3,7 +3,7 @@ import logging
|
||||
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import zhipu_complete, zhipu_embedding
|
||||
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
@@ -6,7 +6,7 @@ from dotenv import load_dotenv
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.kg.postgres_impl import PostgreSQLDB
|
||||
from lightrag.llm import ollama_embedding, zhipu_complete
|
||||
from lightrag.llm.zhipu import ollama_embedding, zhipu_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
load_dotenv()
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -35,7 +35,7 @@ EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
|
||||
|
||||
#########
|
||||
|
@@ -16,7 +16,7 @@
|
||||
"import logging\n",
|
||||
"import numpy as np\n",
|
||||
"from lightrag import LightRAG, QueryParam\n",
|
||||
"from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
|
||||
"from lightrag.llm.openai import openai_complete_if_cache, openai_embed\n",
|
||||
"from lightrag.utils import EmbeddingFunc\n",
|
||||
"import nest_asyncio"
|
||||
]
|
||||
@@ -74,7 +74,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
||||
" return await openai_embedding(\n",
|
||||
" return await openai_embed(\n",
|
||||
" texts,\n",
|
||||
" model=\"ep-20241231173413-pgjmk\",\n",
|
||||
" api_key=API,\n",
|
||||
@@ -138,7 +138,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
||||
" return await openai_embedding(\n",
|
||||
" return await openai_embed(\n",
|
||||
" texts,\n",
|
||||
" model=\"ep-20241231173413-pgjmk\",\n",
|
||||
" api_key=API,\n",
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import time
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# Working directory and the directory path for text files
|
||||
@@ -20,7 +20,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
|
||||
func=lambda texts: ollama_embed(texts, embed_model="nomic-embed-text"),
|
||||
),
|
||||
)
|
||||
|
||||
|
Reference in New Issue
Block a user