Separated llms from the main llm.py file and fixed some deprication bugs

This commit is contained in:
Saifeddine ALOUI
2025-01-25 00:11:00 +01:00
parent 7e1638525c
commit 34018cb1e0
55 changed files with 2144 additions and 1301 deletions

View File

@@ -6,10 +6,6 @@ from datetime import datetime
from functools import partial
from typing import Type, cast, Dict
from .llm import (
gpt_4o_mini_complete,
openai_embedding,
)
from .operate import (
chunking_by_token_size,
extract_entities,
@@ -154,12 +150,12 @@ class LightRAG:
)
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
embedding_func: EmbeddingFunc = field(default_factory=lambda: openai_embedding)
embedding_func: EmbeddingFunc = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
embedding_batch_num: int = 32
embedding_func_max_async: int = 16
# LLM
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16