Separated llms from the main llm.py file and fixed some deprication bugs
This commit is contained in:
232
lightrag/llm/openai.py
Normal file
232
lightrag/llm/openai.py
Normal file
@@ -0,0 +1,232 @@
|
||||
"""
|
||||
OpenAI LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with openai's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- openai
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.openai import openai_model_complete, openai_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
base_url=None,
|
||||
api_key=None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = (
|
||||
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# 添加日志输出
|
||||
logger.debug("===== Query Input to LLM =====")
|
||||
logger.debug(f"Query: {prompt}")
|
||||
logger.debug(f"System prompt: {system_prompt}")
|
||||
logger.debug("Full context:")
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.beta.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
return content
|
||||
|
||||
|
||||
|
||||
async def openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await openai_complete_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def gpt_4o_mini_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def nvidia_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
result = await openai_complete_if_cache(
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url="https://integrate.api.nvidia.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
if keyword_extraction: # TODO: use JSON API
|
||||
return locate_json_string_body_from_string(result)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def openai_embed(
|
||||
texts: list[str],
|
||||
model: str = "text-embedding-3-small",
|
||||
base_url: str = None,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = (
|
||||
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
)
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
Reference in New Issue
Block a user