Separated llms from the main llm.py file and fixed some deprication bugs
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -22,3 +22,5 @@ venv/
|
||||
examples/input/
|
||||
examples/output/
|
||||
.DS_Store
|
||||
#Remove config.ini from repo
|
||||
*.ini
|
10
README.md
10
README.md
@@ -81,7 +81,7 @@ Use the below Python snippet (in a script) to initialize LightRAG and perform qu
|
||||
```python
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -177,7 +177,7 @@ async def llm_model_func(
|
||||
)
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
@@ -233,7 +233,7 @@ If you want to use Ollama models, you need to pull model you plan to use and emb
|
||||
Then you only need to set LightRAG as follows:
|
||||
|
||||
```python
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# Initialize LightRAG with Ollama model
|
||||
@@ -245,7 +245,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
@@ -690,7 +690,7 @@ if __name__ == "__main__":
|
||||
| **entity\_summary\_to\_max\_tokens** | `int` | Maximum token size for each entity summary | `500` |
|
||||
| **node\_embedding\_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
|
||||
| **node2vec\_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
|
||||
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embedding` |
|
||||
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` |
|
||||
| **embedding\_batch\_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
|
||||
| **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
|
||||
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
||||
|
13
config.ini
13
config.ini
@@ -1,13 +0,0 @@
|
||||
[redis]
|
||||
uri = redis://localhost:6379
|
||||
|
||||
[neo4j]
|
||||
uri = #
|
||||
username = neo4j
|
||||
password = 12345678
|
||||
|
||||
[milvus]
|
||||
uri = #
|
||||
user = root
|
||||
password = Milvus
|
||||
db_name = lightrag
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
|
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from typing import Optional
|
||||
import asyncio
|
||||
@@ -38,7 +38,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -9,7 +9,7 @@ from typing import Optional
|
||||
import os
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embed
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
import nest_asyncio
|
||||
|
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from typing import Optional
|
||||
@@ -48,7 +48,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
@@ -13,7 +13,7 @@ from pathlib import Path
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -64,7 +64,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
api_key=APIKEY,
|
||||
|
@@ -6,7 +6,7 @@ import os
|
||||
import logging
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import bedrock_complete, bedrock_embedding
|
||||
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||
@@ -20,7 +20,7 @@ rag = LightRAG(
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embedding
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
|
||||
),
|
||||
)
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import hf_model_complete, hf_embedding
|
||||
from lightrag.llm.hf import hf_model_complete, hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
@@ -17,7 +17,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
|
@@ -1,13 +1,14 @@
|
||||
import numpy as np
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm import jina_embedding, openai_complete_if_cache
|
||||
from lightrag.llm.jina import jina_embed
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await jina_embedding(texts, api_key="YourJinaAPIKey")
|
||||
return await jina_embed(texts, api_key="YourJinaAPIKey")
|
||||
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import lmdeploy_model_if_cache, hf_embedding
|
||||
from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
|
||||
from lightrag.llm.hf import hf_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
@@ -42,7 +43,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
func=lambda texts: hf_embed(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
|
@@ -3,7 +3,7 @@ import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import (
|
||||
openai_complete_if_cache,
|
||||
nvidia_openai_embedding,
|
||||
nvidia_openai_embed,
|
||||
)
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
@@ -47,7 +47,7 @@ nvidia_embed_model = "nvidia/nv-embedqa-e5-v5"
|
||||
|
||||
|
||||
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await nvidia_openai_embedding(
|
||||
return await nvidia_openai_embed(
|
||||
texts,
|
||||
model=nvidia_embed_model, # maximum 512 token
|
||||
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
||||
@@ -60,7 +60,7 @@ async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
||||
|
||||
|
||||
async def query_embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await nvidia_openai_embedding(
|
||||
return await nvidia_openai_embed(
|
||||
texts,
|
||||
model=nvidia_embed_model, # maximum 512 token
|
||||
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
||||
|
@@ -4,7 +4,7 @@ import logging
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens_age"
|
||||
@@ -32,7 +32,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
import inspect
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
@@ -23,7 +23,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -10,7 +10,7 @@ import os
|
||||
# logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens_gremlin"
|
||||
@@ -41,7 +41,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
),
|
||||
),
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embed
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# WorkingDir
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -26,7 +26,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -26,7 +26,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import inspect
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm import openai_complete, openai_embedding
|
||||
from lightrag.llm import openai_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.lightrag import always_get_an_event_loop
|
||||
from lightrag import QueryParam
|
||||
@@ -24,7 +24,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: openai_embedding(
|
||||
func=lambda texts: openai_embed(
|
||||
texts=texts,
|
||||
model="text-embedding-bge-m3",
|
||||
base_url="http://127.0.0.1:1234/v1",
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_embed, openai_complete_if_cache
|
||||
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# WorkingDir
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
from pathlib import Path
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
@@ -42,7 +42,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDMODEL,
|
||||
api_key=APIKEY,
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, siliconcloud_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
from lightrag.llm.siliconcloud import siliconcloud_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
|
@@ -3,7 +3,7 @@ import logging
|
||||
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import zhipu_complete, zhipu_embedding
|
||||
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
@@ -6,7 +6,7 @@ from dotenv import load_dotenv
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.kg.postgres_impl import PostgreSQLDB
|
||||
from lightrag.llm import ollama_embedding, zhipu_complete
|
||||
from lightrag.llm.zhipu import ollama_embedding, zhipu_complete
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
load_dotenv()
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -35,7 +35,7 @@ EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
|
||||
|
||||
#########
|
||||
|
@@ -16,7 +16,7 @@
|
||||
"import logging\n",
|
||||
"import numpy as np\n",
|
||||
"from lightrag import LightRAG, QueryParam\n",
|
||||
"from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
|
||||
"from lightrag.llm.openai import openai_complete_if_cache, openai_embed\n",
|
||||
"from lightrag.utils import EmbeddingFunc\n",
|
||||
"import nest_asyncio"
|
||||
]
|
||||
@@ -74,7 +74,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
||||
" return await openai_embedding(\n",
|
||||
" return await openai_embed(\n",
|
||||
" texts,\n",
|
||||
" model=\"ep-20241231173413-pgjmk\",\n",
|
||||
" api_key=API,\n",
|
||||
@@ -138,7 +138,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
||||
" return await openai_embedding(\n",
|
||||
" return await openai_embed(\n",
|
||||
" texts,\n",
|
||||
" model=\"ep-20241231173413-pgjmk\",\n",
|
||||
" api_key=API,\n",
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import time
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
# Working directory and the directory path for text files
|
||||
@@ -20,7 +20,7 @@ rag = LightRAG(
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
|
||||
func=lambda texts: ollama_embed(texts, embed_model="nomic-embed-text"),
|
||||
),
|
||||
)
|
||||
|
||||
|
@@ -8,10 +8,6 @@ import time
|
||||
import re
|
||||
from typing import List, Dict, Any, Optional, Union
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import lollms_model_complete, lollms_embed
|
||||
from lightrag.llm import ollama_model_complete, ollama_embed
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
|
||||
from lightrag.api import __api_version__
|
||||
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
@@ -720,6 +716,20 @@ def create_app(args):
|
||||
|
||||
# Create working directory if it doesn't exist
|
||||
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
||||
if args.llm_binding_host == "lollms" or args.embedding_binding == "lollms":
|
||||
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
|
||||
if args.llm_binding_host == "ollama" or args.embedding_binding == "ollama":
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
if args.llm_binding_host == "openai" or args.embedding_binding == "openai":
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
if (
|
||||
args.llm_binding_host == "azure_openai"
|
||||
or args.embedding_binding == "azure_openai"
|
||||
):
|
||||
from lightrag.llm.azure_openai import (
|
||||
azure_openai_complete_if_cache,
|
||||
azure_openai_embed,
|
||||
)
|
||||
|
||||
async def openai_alike_model_complete(
|
||||
prompt,
|
||||
@@ -773,13 +783,13 @@ def create_app(args):
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "ollama"
|
||||
else azure_openai_embedding(
|
||||
else azure_openai_embed(
|
||||
texts,
|
||||
model=args.embedding_model, # no host is used for openai,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "azure_openai"
|
||||
else openai_embedding(
|
||||
else openai_embed(
|
||||
texts,
|
||||
model=args.embedding_model, # no host is used for openai,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
|
@@ -1,4 +1,3 @@
|
||||
aioboto3
|
||||
ascii_colors
|
||||
fastapi
|
||||
nano_vectordb
|
||||
|
55
lightrag/exceptions.py
Normal file
55
lightrag/exceptions.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import httpx
|
||||
from typing import Literal
|
||||
|
||||
class APIStatusError(Exception):
|
||||
"""Raised when an API response has a status code of 4xx or 5xx."""
|
||||
|
||||
response: httpx.Response
|
||||
status_code: int
|
||||
request_id: str | None
|
||||
|
||||
def __init__(self, message: str, *, response: httpx.Response, body: object | None) -> None:
|
||||
super().__init__(message, response.request, body=body)
|
||||
self.response = response
|
||||
self.status_code = response.status_code
|
||||
self.request_id = response.headers.get("x-request-id")
|
||||
|
||||
class APIConnectionError(Exception):
|
||||
def __init__(self, *, message: str = "Connection error.", request: httpx.Request) -> None:
|
||||
super().__init__(message, request, body=None)
|
||||
|
||||
|
||||
class BadRequestError(APIStatusError):
|
||||
status_code: Literal[400] = 400 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
|
||||
class AuthenticationError(APIStatusError):
|
||||
status_code: Literal[401] = 401 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
|
||||
class PermissionDeniedError(APIStatusError):
|
||||
status_code: Literal[403] = 403 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
|
||||
class NotFoundError(APIStatusError):
|
||||
status_code: Literal[404] = 404 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
|
||||
class ConflictError(APIStatusError):
|
||||
status_code: Literal[409] = 409 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
|
||||
class UnprocessableEntityError(APIStatusError):
|
||||
status_code: Literal[422] = 422 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
|
||||
class RateLimitError(APIStatusError):
|
||||
status_code: Literal[429] = 429 # pyright: ignore[reportIncompatibleVariableOverride]
|
||||
|
||||
class APITimeoutError(APIConnectionError):
|
||||
def __init__(self, request: httpx.Request) -> None:
|
||||
super().__init__(message="Request timed out.", request=request)
|
||||
|
||||
|
||||
class BadRequestError(APIStatusError):
|
||||
status_code: Literal[400] = 400 # pyright: ignore[reportIncompatibleVariableOverride]
|
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import dataclass
|
||||
import aioredis
|
||||
# aioredis is a depricated library, replaced with redis
|
||||
from redis.asyncio import Redis
|
||||
from lightrag.utils import logger
|
||||
from lightrag.base import BaseKVStorage
|
||||
import json
|
||||
@@ -11,7 +12,7 @@ import json
|
||||
class RedisKVStorage(BaseKVStorage):
|
||||
def __post_init__(self):
|
||||
redis_url = os.environ.get("REDIS_URI", "redis://localhost:6379")
|
||||
self._redis = aioredis.from_url(redis_url, decode_responses=True)
|
||||
self._redis = Redis.from_url(redis_url, decode_responses=True)
|
||||
logger.info(f"Use Redis as KV {self.namespace}")
|
||||
|
||||
async def all_keys(self) -> list[str]:
|
||||
|
@@ -6,10 +6,6 @@ from datetime import datetime
|
||||
from functools import partial
|
||||
from typing import Type, cast, Dict
|
||||
|
||||
from .llm import (
|
||||
gpt_4o_mini_complete,
|
||||
openai_embedding,
|
||||
)
|
||||
from .operate import (
|
||||
chunking_by_token_size,
|
||||
extract_entities,
|
||||
@@ -154,12 +150,12 @@ class LightRAG:
|
||||
)
|
||||
|
||||
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
||||
embedding_func: EmbeddingFunc = field(default_factory=lambda: openai_embedding)
|
||||
embedding_func: EmbeddingFunc = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
||||
embedding_batch_num: int = 32
|
||||
embedding_func_max_async: int = 16
|
||||
|
||||
# LLM
|
||||
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
|
||||
llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
||||
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
||||
llm_model_max_token_size: int = 32768
|
||||
llm_model_max_async: int = 16
|
||||
|
1210
lightrag/llm.py
1210
lightrag/llm.py
File diff suppressed because it is too large
Load Diff
0
lightrag/llm/__init__.py
Normal file
0
lightrag/llm/__init__.py
Normal file
188
lightrag/llm/azure_openai.py
Normal file
188
lightrag/llm/azure_openai.py
Normal file
@@ -0,0 +1,188 @@
|
||||
"""
|
||||
Azure OpenAI LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with aure openai's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- openai
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.azure_openai import azure_openai_model_complete, azure_openai_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
|
||||
import os
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
|
||||
from openai import (
|
||||
AsyncAzureOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APIConnectionError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
base_url=None,
|
||||
api_key=None,
|
||||
api_version=None,
|
||||
**kwargs,
|
||||
):
|
||||
if api_key:
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
||||
if base_url:
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||||
if api_version:
|
||||
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
if prompt is not None:
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.beta.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
return content
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
if keyword_extraction: # TODO: use JSON API
|
||||
return locate_json_string_body_from_string(result)
|
||||
return result
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str = "text-embedding-3-small",
|
||||
base_url: str = None,
|
||||
api_key: str = None,
|
||||
api_version: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
||||
if base_url:
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||||
if api_version:
|
||||
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
|
229
lightrag/llm/bedrock.py
Normal file
229
lightrag/llm/bedrock.py
Normal file
@@ -0,0 +1,229 @@
|
||||
"""
|
||||
Bedrock LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with Bedrock's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- aioboto3, tenacity
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.bebrock import bebrock_model_complete, bebrock_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
|
||||
import sys
|
||||
import copy
|
||||
import os
|
||||
import json
|
||||
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
if not pm.is_installed("aioboto3"):
|
||||
pm.install("aioboto3")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
import aioboto3
|
||||
import numpy as np
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.exceptions import (
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from lightrag.utils import (
|
||||
locate_json_string_body_from_string,
|
||||
)
|
||||
|
||||
class BedrockError(Exception):
|
||||
"""Generic error for issues related to Amazon Bedrock"""
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(5),
|
||||
wait=wait_exponential(multiplier=1, max=60),
|
||||
retry=retry_if_exception_type((BedrockError)),
|
||||
)
|
||||
async def bedrock_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
aws_access_key_id=None,
|
||||
aws_secret_access_key=None,
|
||||
aws_session_token=None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
||||
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
||||
)
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
||||
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
||||
)
|
||||
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
||||
"AWS_SESSION_TOKEN", aws_session_token
|
||||
)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
# Fix message history format
|
||||
messages = []
|
||||
for history_message in history_messages:
|
||||
message = copy.copy(history_message)
|
||||
message["content"] = [{"text": message["content"]}]
|
||||
messages.append(message)
|
||||
|
||||
# Add user prompt
|
||||
messages.append({"role": "user", "content": [{"text": prompt}]})
|
||||
|
||||
# Initialize Converse API arguments
|
||||
args = {"modelId": model, "messages": messages}
|
||||
|
||||
# Define system prompt
|
||||
if system_prompt:
|
||||
args["system"] = [{"text": system_prompt}]
|
||||
|
||||
# Map and set up inference parameters
|
||||
inference_params_map = {
|
||||
"max_tokens": "maxTokens",
|
||||
"top_p": "topP",
|
||||
"stop_sequences": "stopSequences",
|
||||
}
|
||||
if inference_params := list(
|
||||
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
||||
):
|
||||
args["inferenceConfig"] = {}
|
||||
for param in inference_params:
|
||||
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
||||
kwargs.pop(param)
|
||||
)
|
||||
|
||||
# Call model via Converse API
|
||||
session = aioboto3.Session()
|
||||
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||
try:
|
||||
response = await bedrock_async_client.converse(**args, **kwargs)
|
||||
except Exception as e:
|
||||
raise BedrockError(e)
|
||||
|
||||
return response["output"]["message"]["content"][0]["text"]
|
||||
|
||||
|
||||
async def bedrock_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
result = await bedrock_complete_if_cache(
|
||||
"anthropic.claude-3-haiku-20240307-v1:0",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
if keyword_extraction: # TODO: use JSON API
|
||||
return locate_json_string_body_from_string(result)
|
||||
return result
|
||||
|
||||
|
||||
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
||||
# @retry(
|
||||
# stop=stop_after_attempt(3),
|
||||
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
||||
# )
|
||||
async def bedrock_embed(
|
||||
texts: list[str],
|
||||
model: str = "amazon.titan-embed-text-v2:0",
|
||||
aws_access_key_id=None,
|
||||
aws_secret_access_key=None,
|
||||
aws_session_token=None,
|
||||
) -> np.ndarray:
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
||||
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
||||
)
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
||||
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
||||
)
|
||||
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
||||
"AWS_SESSION_TOKEN", aws_session_token
|
||||
)
|
||||
|
||||
session = aioboto3.Session()
|
||||
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||
if (model_provider := model.split(".")[0]) == "amazon":
|
||||
embed_texts = []
|
||||
for text in texts:
|
||||
if "v2" in model:
|
||||
body = json.dumps(
|
||||
{
|
||||
"inputText": text,
|
||||
# 'dimensions': embedding_dim,
|
||||
"embeddingTypes": ["float"],
|
||||
}
|
||||
)
|
||||
elif "v1" in model:
|
||||
body = json.dumps({"inputText": text})
|
||||
else:
|
||||
raise ValueError(f"Model {model} is not supported!")
|
||||
|
||||
response = await bedrock_async_client.invoke_model(
|
||||
modelId=model,
|
||||
body=body,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
|
||||
response_body = await response.get("body").json()
|
||||
|
||||
embed_texts.append(response_body["embedding"])
|
||||
elif model_provider == "cohere":
|
||||
body = json.dumps(
|
||||
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
||||
)
|
||||
|
||||
response = await bedrock_async_client.invoke_model(
|
||||
model=model,
|
||||
body=body,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
|
||||
response_body = json.loads(response.get("body").read())
|
||||
|
||||
embed_texts = response_body["embeddings"]
|
||||
else:
|
||||
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
||||
|
||||
return np.array(embed_texts)
|
187
lightrag/llm/hf.py
Normal file
187
lightrag/llm/hf.py
Normal file
@@ -0,0 +1,187 @@
|
||||
"""
|
||||
Hugging face LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with Hugging face's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- transformers
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.hf import hf_model_complete, hf_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
import copy
|
||||
import os
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("transformers"):
|
||||
pm.install("transformers")
|
||||
if not pm.is_installed("torch"):
|
||||
pm.install("torch")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from functools import lru_cache
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
from lightrag.exceptions import (
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from lightrag.utils import (
|
||||
locate_json_string_body_from_string,
|
||||
)
|
||||
import torch
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def initialize_hf_model(model_name):
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
hf_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
if hf_tokenizer.pad_token is None:
|
||||
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
||||
|
||||
return hf_model, hf_tokenizer
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def hf_model_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
**kwargs,
|
||||
) -> str:
|
||||
model_name = model
|
||||
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
kwargs.pop("hashing_kv", None)
|
||||
input_prompt = ""
|
||||
try:
|
||||
input_prompt = hf_tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
except Exception:
|
||||
try:
|
||||
ori_message = copy.deepcopy(messages)
|
||||
if messages[0]["role"] == "system":
|
||||
messages[1]["content"] = (
|
||||
"<system>"
|
||||
+ messages[0]["content"]
|
||||
+ "</system>\n"
|
||||
+ messages[1]["content"]
|
||||
)
|
||||
messages = messages[1:]
|
||||
input_prompt = hf_tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
except Exception:
|
||||
len_message = len(ori_message)
|
||||
for msgid in range(len_message):
|
||||
input_prompt = (
|
||||
input_prompt
|
||||
+ "<"
|
||||
+ ori_message[msgid]["role"]
|
||||
+ ">"
|
||||
+ ori_message[msgid]["content"]
|
||||
+ "</"
|
||||
+ ori_message[msgid]["role"]
|
||||
+ ">\n"
|
||||
)
|
||||
|
||||
input_ids = hf_tokenizer(
|
||||
input_prompt, return_tensors="pt", padding=True, truncation=True
|
||||
).to("cuda")
|
||||
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
||||
output = hf_model.generate(
|
||||
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
||||
)
|
||||
response_text = hf_tokenizer.decode(
|
||||
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
||||
)
|
||||
|
||||
return response_text
|
||||
|
||||
|
||||
|
||||
async def hf_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
result = await hf_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
if keyword_extraction: # TODO: use JSON API
|
||||
return locate_json_string_body_from_string(result)
|
||||
return result
|
||||
|
||||
|
||||
async def hf_embed(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||
device = next(embed_model.parameters()).device
|
||||
input_ids = tokenizer(
|
||||
texts, return_tensors="pt", padding=True, truncation=True
|
||||
).input_ids.to(device)
|
||||
with torch.no_grad():
|
||||
outputs = embed_model(input_ids)
|
||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||
if embeddings.dtype == torch.bfloat16:
|
||||
return embeddings.detach().to(torch.float32).cpu().numpy()
|
||||
else:
|
||||
return embeddings.detach().cpu().numpy()
|
104
lightrag/llm/jina.py
Normal file
104
lightrag/llm/jina.py
Normal file
@@ -0,0 +1,104 @@
|
||||
"""
|
||||
Jina Embedding Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with jina system,
|
||||
including embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added embedding generation
|
||||
|
||||
Dependencies:
|
||||
- tenacity
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.jina import jina_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
import os
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("lmdeploy"):
|
||||
pm.install("lmdeploy")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
import aiohttp
|
||||
|
||||
|
||||
async def fetch_data(url, headers, data):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(url, headers=headers, json=data) as response:
|
||||
response_json = await response.json()
|
||||
data_list = response_json.get("data", [])
|
||||
return data_list
|
||||
|
||||
|
||||
async def jina_embed(
|
||||
texts: list[str],
|
||||
dimensions: int = 1024,
|
||||
late_chunking: bool = False,
|
||||
base_url: str = None,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["JINA_API_KEY"] = api_key
|
||||
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
|
||||
}
|
||||
data = {
|
||||
"model": "jina-embeddings-v3",
|
||||
"normalized": True,
|
||||
"embedding_type": "float",
|
||||
"dimensions": f"{dimensions}",
|
||||
"late_chunking": late_chunking,
|
||||
"input": texts,
|
||||
}
|
||||
data_list = await fetch_data(url, headers, data)
|
||||
return np.array([dp["embedding"] for dp in data_list])
|
||||
|
190
lightrag/llm/lmdeploy.py
Normal file
190
lightrag/llm/lmdeploy.py
Normal file
@@ -0,0 +1,190 @@
|
||||
"""
|
||||
LMDeploy LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with LMDeploy's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- tenacity
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.lmdeploy import lmdeploy_model_complete, lmdeploy_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("lmdeploy"):
|
||||
pm.install("lmdeploy[all]")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
|
||||
from lightrag.exceptions import (
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
|
||||
from functools import lru_cache
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def initialize_lmdeploy_pipeline(
|
||||
model,
|
||||
tp=1,
|
||||
chat_template=None,
|
||||
log_level="WARNING",
|
||||
model_format="hf",
|
||||
quant_policy=0,
|
||||
):
|
||||
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
||||
|
||||
lmdeploy_pipe = pipeline(
|
||||
model_path=model,
|
||||
backend_config=TurbomindEngineConfig(
|
||||
tp=tp, model_format=model_format, quant_policy=quant_policy
|
||||
),
|
||||
chat_template_config=(
|
||||
ChatTemplateConfig(model_name=chat_template) if chat_template else None
|
||||
),
|
||||
log_level="WARNING",
|
||||
)
|
||||
return lmdeploy_pipe
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def lmdeploy_model_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
chat_template=None,
|
||||
model_format="hf",
|
||||
quant_policy=0,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
"""
|
||||
Args:
|
||||
model (str): The path to the model.
|
||||
It could be one of the following options:
|
||||
- i) A local directory path of a turbomind model which is
|
||||
converted by `lmdeploy convert` command or download
|
||||
from ii) and iii).
|
||||
- ii) The model_id of a lmdeploy-quantized model hosted
|
||||
inside a model repo on huggingface.co, such as
|
||||
"InternLM/internlm-chat-20b-4bit",
|
||||
"lmdeploy/llama2-chat-70b-4bit", etc.
|
||||
- iii) The model_id of a model hosted inside a model repo
|
||||
on huggingface.co, such as "internlm/internlm-chat-7b",
|
||||
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
|
||||
and so on.
|
||||
chat_template (str): needed when model is a pytorch model on
|
||||
huggingface.co, such as "internlm-chat-7b",
|
||||
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on,
|
||||
and when the model name of local path did not match the original model name in HF.
|
||||
tp (int): tensor parallel
|
||||
prompt (Union[str, List[str]]): input texts to be completed.
|
||||
do_preprocess (bool): whether pre-process the messages. Default to
|
||||
True, which means chat_template will be applied.
|
||||
skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be True.
|
||||
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
|
||||
Default to be False, which means greedy decoding will be applied.
|
||||
"""
|
||||
try:
|
||||
import lmdeploy
|
||||
from lmdeploy import version_info, GenerationConfig
|
||||
except Exception:
|
||||
raise ImportError("Please install lmdeploy before initialize lmdeploy backend.")
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("response_format", None)
|
||||
max_new_tokens = kwargs.pop("max_tokens", 512)
|
||||
tp = kwargs.pop("tp", 1)
|
||||
skip_special_tokens = kwargs.pop("skip_special_tokens", True)
|
||||
do_preprocess = kwargs.pop("do_preprocess", True)
|
||||
do_sample = kwargs.pop("do_sample", False)
|
||||
gen_params = kwargs
|
||||
|
||||
version = version_info
|
||||
if do_sample is not None and version < (0, 6, 0):
|
||||
raise RuntimeError(
|
||||
"`do_sample` parameter is not supported by lmdeploy until "
|
||||
f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}"
|
||||
)
|
||||
else:
|
||||
do_sample = True
|
||||
gen_params.update(do_sample=do_sample)
|
||||
|
||||
lmdeploy_pipe = initialize_lmdeploy_pipeline(
|
||||
model=model,
|
||||
tp=tp,
|
||||
chat_template=chat_template,
|
||||
model_format=model_format,
|
||||
quant_policy=quant_policy,
|
||||
log_level="WARNING",
|
||||
)
|
||||
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
gen_config = GenerationConfig(
|
||||
skip_special_tokens=skip_special_tokens,
|
||||
max_new_tokens=max_new_tokens,
|
||||
**gen_params,
|
||||
)
|
||||
|
||||
response = ""
|
||||
async for res in lmdeploy_pipe.generate(
|
||||
messages,
|
||||
gen_config=gen_config,
|
||||
do_preprocess=do_preprocess,
|
||||
stream_response=False,
|
||||
session_id=1,
|
||||
):
|
||||
response += res.response
|
||||
return response
|
222
lightrag/llm/lollms.py
Normal file
222
lightrag/llm/lollms.py
Normal file
@@ -0,0 +1,222 @@
|
||||
"""
|
||||
LoLLMs (Lord of Large Language Models) Interface Module
|
||||
=====================================================
|
||||
|
||||
This module provides the official interface for interacting with LoLLMs (Lord of Large Language and multimodal Systems),
|
||||
a unified framework for AI model interaction and deployment.
|
||||
|
||||
LoLLMs is designed as a "one tool to rule them all" solution, providing seamless integration
|
||||
with various AI models while maintaining high performance and user-friendly interfaces.
|
||||
|
||||
Author: ParisNeo
|
||||
Created: 2024-01-24
|
||||
License: Apache 2.0
|
||||
|
||||
Copyright (c) 2024 ParisNeo
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
Version: 2.0.0
|
||||
|
||||
Change Log:
|
||||
- 2.0.0 (2024-01-24):
|
||||
* Added async support for model inference
|
||||
* Implemented streaming capabilities
|
||||
* Added embedding generation functionality
|
||||
* Enhanced parameter handling
|
||||
* Improved error handling and timeout management
|
||||
|
||||
Dependencies:
|
||||
- aiohttp
|
||||
- numpy
|
||||
- Python >= 3.10
|
||||
|
||||
Features:
|
||||
- Async text generation with streaming support
|
||||
- Embedding generation
|
||||
- Configurable model parameters
|
||||
- System prompt and chat history support
|
||||
- Timeout handling
|
||||
- API key authentication
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.lollms import lollms_model_complete, lollms_embed
|
||||
|
||||
Project Repository: https://github.com/ParisNeo/lollms
|
||||
Documentation: https://github.com/ParisNeo/lollms/docs
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "ParisNeo"
|
||||
__status__ = "Production"
|
||||
__project_url__ = "https://github.com/ParisNeo/lollms"
|
||||
__doc_url__ = "https://github.com/ParisNeo/lollms/docs"
|
||||
import sys
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
if not pm.is_installed("aiohttp"):
|
||||
pm.install("aiohttp")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
|
||||
import aiohttp
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.exceptions import (
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
|
||||
from typing import Union, List
|
||||
import numpy as np
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def lollms_model_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
base_url="http://localhost:9600",
|
||||
**kwargs,
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
"""Client implementation for lollms generation."""
|
||||
|
||||
stream = True if kwargs.get("stream") else False
|
||||
api_key = kwargs.pop("api_key", None)
|
||||
headers = (
|
||||
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
||||
if api_key
|
||||
else {"Content-Type": "application/json"}
|
||||
)
|
||||
|
||||
# Extract lollms specific parameters
|
||||
request_data = {
|
||||
"prompt": prompt,
|
||||
"model_name": model,
|
||||
"personality": kwargs.get("personality", -1),
|
||||
"n_predict": kwargs.get("n_predict", None),
|
||||
"stream": stream,
|
||||
"temperature": kwargs.get("temperature", 0.1),
|
||||
"top_k": kwargs.get("top_k", 50),
|
||||
"top_p": kwargs.get("top_p", 0.95),
|
||||
"repeat_penalty": kwargs.get("repeat_penalty", 0.8),
|
||||
"repeat_last_n": kwargs.get("repeat_last_n", 40),
|
||||
"seed": kwargs.get("seed", None),
|
||||
"n_threads": kwargs.get("n_threads", 8),
|
||||
}
|
||||
|
||||
# Prepare the full prompt including history
|
||||
full_prompt = ""
|
||||
if system_prompt:
|
||||
full_prompt += f"{system_prompt}\n"
|
||||
for msg in history_messages:
|
||||
full_prompt += f"{msg['role']}: {msg['content']}\n"
|
||||
full_prompt += prompt
|
||||
|
||||
request_data["prompt"] = full_prompt
|
||||
timeout = aiohttp.ClientTimeout(total=kwargs.get("timeout", None))
|
||||
|
||||
async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session:
|
||||
if stream:
|
||||
|
||||
async def inner():
|
||||
async with session.post(
|
||||
f"{base_url}/lollms_generate", json=request_data
|
||||
) as response:
|
||||
async for line in response.content:
|
||||
yield line.decode().strip()
|
||||
|
||||
return inner()
|
||||
else:
|
||||
async with session.post(
|
||||
f"{base_url}/lollms_generate", json=request_data
|
||||
) as response:
|
||||
return await response.text()
|
||||
|
||||
|
||||
async def lollms_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
"""Complete function for lollms model generation."""
|
||||
|
||||
# Extract and remove keyword_extraction from kwargs if present
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
|
||||
# Get model name from config
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
|
||||
# If keyword extraction is needed, we might need to modify the prompt
|
||||
# or add specific parameters for JSON output (if lollms supports it)
|
||||
if keyword_extraction:
|
||||
# Note: You might need to adjust this based on how lollms handles structured output
|
||||
pass
|
||||
|
||||
return await lollms_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
|
||||
async def lollms_embed(
|
||||
texts: List[str], embed_model=None, base_url="http://localhost:9600", **kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Generate embeddings for a list of texts using lollms server.
|
||||
|
||||
Args:
|
||||
texts: List of strings to embed
|
||||
embed_model: Model name (not used directly as lollms uses configured vectorizer)
|
||||
base_url: URL of the lollms server
|
||||
**kwargs: Additional arguments passed to the request
|
||||
|
||||
Returns:
|
||||
np.ndarray: Array of embeddings
|
||||
"""
|
||||
api_key = kwargs.pop("api_key", None)
|
||||
headers = (
|
||||
{"Content-Type": "application/json", "Authorization": api_key}
|
||||
if api_key
|
||||
else {"Content-Type": "application/json"}
|
||||
)
|
||||
async with aiohttp.ClientSession(headers=headers) as session:
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
request_data = {"text": text}
|
||||
|
||||
async with session.post(
|
||||
f"{base_url}/lollms_embed",
|
||||
json=request_data,
|
||||
) as response:
|
||||
result = await response.json()
|
||||
embeddings.append(result["vector"])
|
||||
|
||||
return np.array(embeddings)
|
112
lightrag/llm/nvidia_openai.py
Normal file
112
lightrag/llm/nvidia_openai.py
Normal file
@@ -0,0 +1,112 @@
|
||||
"""
|
||||
OpenAI LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with openai's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- openai
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.nvidia_openai import nvidia_openai_model_complete, nvidia_openai_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
|
||||
import numpy as np
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def nvidia_openai_embed(
|
||||
texts: list[str],
|
||||
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1",
|
||||
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
|
||||
base_url: str = "https://integrate.api.nvidia.com/v1",
|
||||
api_key: str = None,
|
||||
input_type: str = "passage", # query for retrieval, passage for embedding
|
||||
trunc: str = "NONE", # NONE or START or END
|
||||
encode: str = "float", # float or base64
|
||||
) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = (
|
||||
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
)
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model,
|
||||
input=texts,
|
||||
encoding_format=encode,
|
||||
extra_body={"input_type": input_type, "truncate": trunc},
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
155
lightrag/llm/ollama.py
Normal file
155
lightrag/llm/ollama.py
Normal file
@@ -0,0 +1,155 @@
|
||||
"""
|
||||
Ollama LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with Ollama's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- ollama
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.ollama_interface import ollama_model_complete, ollama_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
import sys
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("ollama"):
|
||||
pm.install("ollama")
|
||||
if not pm.is_installed("tenacity"):
|
||||
pm.install("tenacity")
|
||||
|
||||
import ollama
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
from lightrag.exceptions import (
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def ollama_model_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
**kwargs,
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
stream = True if kwargs.get("stream") else False
|
||||
kwargs.pop("max_tokens", None)
|
||||
# kwargs.pop("response_format", None) # allow json
|
||||
host = kwargs.pop("host", None)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
api_key = kwargs.pop("api_key", None)
|
||||
headers = (
|
||||
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
||||
if api_key
|
||||
else {"Content-Type": "application/json"}
|
||||
)
|
||||
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||||
if stream:
|
||||
"""cannot cache stream response"""
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
yield chunk["message"]["content"]
|
||||
|
||||
return inner()
|
||||
else:
|
||||
return response["message"]["content"]
|
||||
|
||||
async def ollama_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await ollama_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||||
"""
|
||||
Deprecated in favor of `embed`.
|
||||
"""
|
||||
embed_text = []
|
||||
ollama_client = ollama.Client(**kwargs)
|
||||
for text in texts:
|
||||
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
||||
embed_text.append(data["embedding"])
|
||||
|
||||
return embed_text
|
||||
|
||||
|
||||
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||||
api_key = kwargs.pop("api_key", None)
|
||||
headers = (
|
||||
{"Content-Type": "application/json", "Authorization": api_key}
|
||||
if api_key
|
||||
else {"Content-Type": "application/json"}
|
||||
)
|
||||
kwargs["headers"] = headers
|
||||
ollama_client = ollama.Client(**kwargs)
|
||||
data = ollama_client.embed(model=embed_model, input=texts)
|
||||
return data["embeddings"]
|
232
lightrag/llm/openai.py
Normal file
232
lightrag/llm/openai.py
Normal file
@@ -0,0 +1,232 @@
|
||||
"""
|
||||
OpenAI LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with openai's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- openai
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.openai import openai_model_complete, openai_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
base_url=None,
|
||||
api_key=None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = (
|
||||
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# 添加日志输出
|
||||
logger.debug("===== Query Input to LLM =====")
|
||||
logger.debug(f"Query: {prompt}")
|
||||
logger.debug(f"System prompt: {system_prompt}")
|
||||
logger.debug("Full context:")
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.beta.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
return content
|
||||
|
||||
|
||||
|
||||
async def openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await openai_complete_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def gpt_4o_mini_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def nvidia_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
result = await openai_complete_if_cache(
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url="https://integrate.api.nvidia.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
if keyword_extraction: # TODO: use JSON API
|
||||
return locate_json_string_body_from_string(result)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def openai_embed(
|
||||
texts: list[str],
|
||||
model: str = "text-embedding-3-small",
|
||||
base_url: str = None,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = (
|
||||
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
)
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
121
lightrag/llm/siliconcloud.py
Normal file
121
lightrag/llm/siliconcloud.py
Normal file
@@ -0,0 +1,121 @@
|
||||
"""
|
||||
SiliconCloud Embedding Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with SiliconCloud system,
|
||||
including embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added embedding generation
|
||||
|
||||
Dependencies:
|
||||
- tenacity
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.siliconcloud import siliconcloud_model_complete, siliconcloud_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
import sys
|
||||
import copy
|
||||
import os
|
||||
import json
|
||||
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("lmdeploy"):
|
||||
pm.install("lmdeploy")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
AsyncAzureOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
import aiohttp
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def siliconcloud_embedding(
|
||||
texts: list[str],
|
||||
model: str = "netease-youdao/bce-embedding-base_v1",
|
||||
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
||||
max_token_size: int = 512,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key and not api_key.startswith("Bearer "):
|
||||
api_key = "Bearer " + api_key
|
||||
|
||||
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
||||
|
||||
truncate_texts = [text[0:max_token_size] for text in texts]
|
||||
|
||||
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
||||
|
||||
base64_strings = []
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(base_url, headers=headers, json=payload) as response:
|
||||
content = await response.json()
|
||||
if "code" in content:
|
||||
raise ValueError(content)
|
||||
base64_strings = [item["embedding"] for item in content["data"]]
|
||||
|
||||
embeddings = []
|
||||
for string in base64_strings:
|
||||
decode_bytes = base64.b64decode(string)
|
||||
n = len(decode_bytes) // 4
|
||||
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
||||
embeddings.append(float_array)
|
||||
return np.array(embeddings)
|
250
lightrag/llm/zhipu.py
Normal file
250
lightrag/llm/zhipu.py
Normal file
@@ -0,0 +1,250 @@
|
||||
"""
|
||||
Zhipu LLM Interface Module
|
||||
==========================
|
||||
|
||||
This module provides interfaces for interacting with LMDeploy's language models,
|
||||
including text generation and embedding capabilities.
|
||||
|
||||
Author: Lightrag team
|
||||
Created: 2024-01-24
|
||||
License: MIT License
|
||||
|
||||
Copyright (c) 2024 Lightrag
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
Version: 1.0.0
|
||||
|
||||
Change Log:
|
||||
- 1.0.0 (2024-01-24): Initial release
|
||||
* Added async chat completion support
|
||||
* Added embedding generation
|
||||
* Added stream response capability
|
||||
|
||||
Dependencies:
|
||||
- tenacity
|
||||
- numpy
|
||||
- pipmaster
|
||||
- Python >= 3.10
|
||||
|
||||
Usage:
|
||||
from llm_interfaces.zhipu import zhipu_model_complete, zhipu_embed
|
||||
"""
|
||||
|
||||
__version__ = "1.0.0"
|
||||
__author__ = "lightrag Team"
|
||||
__status__ = "Production"
|
||||
|
||||
import sys
|
||||
import re
|
||||
import json
|
||||
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("zhipuai"):
|
||||
pm.install("zhipuai")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
AsyncAzureOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
locate_json_string_body_from_string,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
from typing import Union, List, Optional, Dict
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def zhipu_complete_if_cache(
|
||||
prompt: Union[str, List[Dict[str, str]]],
|
||||
model: str = "glm-4-flashx", # The most cost/performance balance model in glm-4 series
|
||||
api_key: Optional[str] = None,
|
||||
system_prompt: Optional[str] = None,
|
||||
history_messages: List[Dict[str, str]] = [],
|
||||
**kwargs,
|
||||
) -> str:
|
||||
# dynamically load ZhipuAI
|
||||
try:
|
||||
from zhipuai import ZhipuAI
|
||||
except ImportError:
|
||||
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
||||
|
||||
if api_key:
|
||||
client = ZhipuAI(api_key=api_key)
|
||||
else:
|
||||
# please set ZHIPUAI_API_KEY in your environment
|
||||
# os.environ["ZHIPUAI_API_KEY"]
|
||||
client = ZhipuAI()
|
||||
|
||||
messages = []
|
||||
|
||||
if not system_prompt:
|
||||
system_prompt = "You are a helpful assistant. Note that sensitive words in the content should be replaced with ***"
|
||||
|
||||
# Add system prompt if provided
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Add debug logging
|
||||
logger.debug("===== Query Input to LLM =====")
|
||||
logger.debug(f"Query: {prompt}")
|
||||
logger.debug(f"System prompt: {system_prompt}")
|
||||
|
||||
# Remove unsupported kwargs
|
||||
kwargs = {
|
||||
k: v for k, v in kwargs.items() if k not in ["hashing_kv", "keyword_extraction"]
|
||||
}
|
||||
|
||||
response = client.chat.completions.create(model=model, messages=messages, **kwargs)
|
||||
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
async def zhipu_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
):
|
||||
# Pop keyword_extraction from kwargs to avoid passing it to zhipu_complete_if_cache
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
|
||||
if keyword_extraction:
|
||||
# Add a system prompt to guide the model to return JSON format
|
||||
extraction_prompt = """You are a helpful assistant that extracts keywords from text.
|
||||
Please analyze the content and extract two types of keywords:
|
||||
1. High-level keywords: Important concepts and main themes
|
||||
2. Low-level keywords: Specific details and supporting elements
|
||||
|
||||
Return your response in this exact JSON format:
|
||||
{
|
||||
"high_level_keywords": ["keyword1", "keyword2"],
|
||||
"low_level_keywords": ["keyword1", "keyword2", "keyword3"]
|
||||
}
|
||||
|
||||
Only return the JSON, no other text."""
|
||||
|
||||
# Combine with existing system prompt if any
|
||||
if system_prompt:
|
||||
system_prompt = f"{system_prompt}\n\n{extraction_prompt}"
|
||||
else:
|
||||
system_prompt = extraction_prompt
|
||||
|
||||
try:
|
||||
response = await zhipu_complete_if_cache(
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Try to parse as JSON
|
||||
try:
|
||||
data = json.loads(response)
|
||||
return GPTKeywordExtractionFormat(
|
||||
high_level_keywords=data.get("high_level_keywords", []),
|
||||
low_level_keywords=data.get("low_level_keywords", []),
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
# If direct JSON parsing fails, try to extract JSON from text
|
||||
match = re.search(r"\{[\s\S]*\}", response)
|
||||
if match:
|
||||
try:
|
||||
data = json.loads(match.group())
|
||||
return GPTKeywordExtractionFormat(
|
||||
high_level_keywords=data.get("high_level_keywords", []),
|
||||
low_level_keywords=data.get("low_level_keywords", []),
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# If all parsing fails, log warning and return empty format
|
||||
logger.warning(
|
||||
f"Failed to parse keyword extraction response: {response}"
|
||||
)
|
||||
return GPTKeywordExtractionFormat(
|
||||
high_level_keywords=[], low_level_keywords=[]
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during keyword extraction: {str(e)}")
|
||||
return GPTKeywordExtractionFormat(
|
||||
high_level_keywords=[], low_level_keywords=[]
|
||||
)
|
||||
else:
|
||||
# For non-keyword-extraction, just return the raw response string
|
||||
return await zhipu_complete_if_cache(
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def zhipu_embedding(
|
||||
texts: list[str], model: str = "embedding-3", api_key: str = None, **kwargs
|
||||
) -> np.ndarray:
|
||||
# dynamically load ZhipuAI
|
||||
try:
|
||||
from zhipuai import ZhipuAI
|
||||
except ImportError:
|
||||
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
||||
if api_key:
|
||||
client = ZhipuAI(api_key=api_key)
|
||||
else:
|
||||
# please set ZHIPUAI_API_KEY in your environment
|
||||
# os.environ["ZHIPUAI_API_KEY"]
|
||||
client = ZhipuAI()
|
||||
|
||||
# Convert single text to list if needed
|
||||
if isinstance(texts, str):
|
||||
texts = [texts]
|
||||
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
try:
|
||||
response = client.embeddings.create(model=model, input=[text], **kwargs)
|
||||
embeddings.append(response.data[0].embedding)
|
||||
except Exception as e:
|
||||
raise Exception(f"Error calling ChatGLM Embedding API: {str(e)}")
|
||||
|
||||
return np.array(embeddings)
|
@@ -6,6 +6,8 @@ from dataclasses import dataclass
|
||||
from typing import Any, Union, cast, Dict
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pipmaster as pm
|
||||
|
||||
from nano_vectordb import NanoVectorDB
|
||||
import time
|
||||
|
||||
|
6
lightrag/types.py
Normal file
6
lightrag/types.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import List
|
||||
|
||||
class GPTKeywordExtractionFormat(BaseModel):
|
||||
high_level_keywords: List[str]
|
||||
low_level_keywords: List[str]
|
@@ -535,7 +535,7 @@ class CacheData:
|
||||
min_val: Optional[float] = None
|
||||
max_val: Optional[float] = None
|
||||
mode: str = "default"
|
||||
|
||||
cache_type: str ="query"
|
||||
|
||||
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
||||
if hashing_kv is None or hasattr(cache_data.content, "__aiter__"):
|
||||
|
@@ -5,7 +5,7 @@ import numpy as np
|
||||
|
||||
from lightrag import LightRAG
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
|
||||
|
||||
## For Upstage API
|
||||
@@ -25,7 +25,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
@@ -4,7 +4,7 @@ import json
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from tqdm import tqdm
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
@@ -26,7 +26,7 @@ async def llm_model_func(
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
return await openai_embed(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
@@ -1,22 +1,20 @@
|
||||
accelerate
|
||||
aioboto3
|
||||
aiofiles
|
||||
aiohttp
|
||||
aioredis
|
||||
redis
|
||||
asyncpg
|
||||
configparser
|
||||
|
||||
# database packages
|
||||
graspologic
|
||||
gremlinpython
|
||||
hnswlib
|
||||
nano-vectordb
|
||||
neo4j
|
||||
networkx
|
||||
|
||||
# TODO : Remove specific databases and move the installation to their corresponding files
|
||||
# Use pipmaster for install if needed
|
||||
numpy
|
||||
ollama
|
||||
openai
|
||||
oracledb
|
||||
pipmaster
|
||||
psycopg-pool
|
||||
@@ -33,14 +31,12 @@ python-dotenv
|
||||
python-pptx
|
||||
pyvis
|
||||
setuptools
|
||||
# lmdeploy[all]
|
||||
sqlalchemy
|
||||
tenacity
|
||||
|
||||
|
||||
# LLM packages
|
||||
tiktoken
|
||||
torch
|
||||
tqdm
|
||||
transformers
|
||||
xxhash
|
||||
|
||||
|
Reference in New Issue
Block a user