specify LLM for query
This commit is contained in:
93
examples/lightrag_multi_model_all_modes_demo.py
Normal file
93
examples/lightrag_multi_model_all_modes_demo.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
WORKING_DIR = "./all_modes_demo"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
# Initialize LightRAG with a base model (gpt-4o-mini)
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=openai_embed,
|
||||
llm_model_func=gpt_4o_mini_complete, # Default model for most queries
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Load the data
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Example query
|
||||
query_text = "What are the main themes in this story?"
|
||||
|
||||
# Demonstrate using default model (gpt-4o-mini) for all modes
|
||||
print("\n===== Default Model (gpt-4o-mini) =====")
|
||||
|
||||
for mode in ["local", "global", "hybrid", "naive", "mix"]:
|
||||
print(f"\n--- {mode.upper()} mode with default model ---")
|
||||
response = rag.query(
|
||||
query_text,
|
||||
param=QueryParam(mode=mode)
|
||||
)
|
||||
print(response)
|
||||
|
||||
# Demonstrate using custom model (gpt-4o) for all modes
|
||||
print("\n===== Custom Model (gpt-4o) =====")
|
||||
|
||||
for mode in ["local", "global", "hybrid", "naive", "mix"]:
|
||||
print(f"\n--- {mode.upper()} mode with custom model ---")
|
||||
response = rag.query(
|
||||
query_text,
|
||||
param=QueryParam(
|
||||
mode=mode,
|
||||
model_func=gpt_4o_complete # Override with more capable model
|
||||
)
|
||||
)
|
||||
print(response)
|
||||
|
||||
# Mixed approach - use different models for different modes
|
||||
print("\n===== Strategic Model Selection =====")
|
||||
|
||||
# Complex analytical question
|
||||
complex_query = "How does the character development in the story reflect Victorian-era social values?"
|
||||
|
||||
# Use default model for simpler modes
|
||||
print("\n--- NAIVE mode with default model (suitable for simple retrieval) ---")
|
||||
response1 = rag.query(
|
||||
complex_query,
|
||||
param=QueryParam(mode="naive") # Use default model for basic retrieval
|
||||
)
|
||||
print(response1)
|
||||
|
||||
# Use more capable model for complex modes
|
||||
print("\n--- HYBRID mode with more capable model (for complex analysis) ---")
|
||||
response2 = rag.query(
|
||||
complex_query,
|
||||
param=QueryParam(
|
||||
mode="hybrid",
|
||||
model_func=gpt_4o_complete # Use more capable model for complex analysis
|
||||
)
|
||||
)
|
||||
print(response2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user