Merge branch 'main' into add-multi-worker-support
This commit is contained in:
@@ -214,12 +214,6 @@ class NetworkXStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
labels = set()
|
labels = set()
|
||||||
for node in self._graph.nodes():
|
for node in self._graph.nodes():
|
||||||
# node_data = dict(self._graph.nodes[node])
|
|
||||||
# if "entity_type" in node_data:
|
|
||||||
# if isinstance(node_data["entity_type"], list):
|
|
||||||
# labels.update(node_data["entity_type"])
|
|
||||||
# else:
|
|
||||||
# labels.add(node_data["entity_type"])
|
|
||||||
labels.add(str(node)) # Add node id as a label
|
labels.add(str(node)) # Add node id as a label
|
||||||
|
|
||||||
# Return sorted list
|
# Return sorted list
|
||||||
|
@@ -139,11 +139,14 @@ async def hf_model_complete(
|
|||||||
|
|
||||||
async def hf_embed(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
async def hf_embed(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||||
device = next(embed_model.parameters()).device
|
device = next(embed_model.parameters()).device
|
||||||
input_ids = tokenizer(
|
encoded_texts = tokenizer(
|
||||||
texts, return_tensors="pt", padding=True, truncation=True
|
texts, return_tensors="pt", padding=True, truncation=True
|
||||||
).input_ids.to(device)
|
).to(device)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
outputs = embed_model(input_ids)
|
outputs = embed_model(
|
||||||
|
input_ids=encoded_texts["input_ids"],
|
||||||
|
attention_mask=encoded_texts["attention_mask"],
|
||||||
|
)
|
||||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||||
if embeddings.dtype == torch.bfloat16:
|
if embeddings.dtype == torch.bfloat16:
|
||||||
return embeddings.detach().to(torch.float32).cpu().numpy()
|
return embeddings.detach().to(torch.float32).cpu().numpy()
|
||||||
|
Reference in New Issue
Block a user