Merge branch 'main' into main
This commit is contained in:
@@ -498,6 +498,10 @@ pip install fastapi uvicorn pydantic
|
|||||||
2. Set up your environment variables:
|
2. Set up your environment variables:
|
||||||
```bash
|
```bash
|
||||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||||
|
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||||
|
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||||
|
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||||
|
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run the API server:
|
3. Run the API server:
|
||||||
@@ -522,7 +526,8 @@ The API server provides the following endpoints:
|
|||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"query": "Your question here",
|
"query": "Your question here",
|
||||||
"mode": "hybrid" // Can be "naive", "local", "global", or "hybrid"
|
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
||||||
|
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
- **Example:**
|
- **Example:**
|
||||||
|
@@ -1,4 +1,4 @@
|
|||||||
from fastapi import FastAPI, HTTPException
|
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
import os
|
import os
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
@@ -18,9 +18,17 @@ app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
|||||||
# Configure working directory
|
# Configure working directory
|
||||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||||
|
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||||
|
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||||
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||||
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||||
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||||
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||||
|
|
||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
|
||||||
# LLM model function
|
# LLM model function
|
||||||
|
|
||||||
|
|
||||||
@@ -28,12 +36,10 @@ async def llm_model_func(
|
|||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
return await openai_complete_if_cache(
|
return await openai_complete_if_cache(
|
||||||
"gpt-4o-mini",
|
LLM_MODEL,
|
||||||
prompt,
|
prompt,
|
||||||
system_prompt=system_prompt,
|
system_prompt=system_prompt,
|
||||||
history_messages=history_messages,
|
history_messages=history_messages,
|
||||||
api_key="YOUR_API_KEY",
|
|
||||||
base_url="YourURL/v1",
|
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -44,37 +50,41 @@ async def llm_model_func(
|
|||||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
return await openai_embedding(
|
return await openai_embedding(
|
||||||
texts,
|
texts,
|
||||||
model="text-embedding-3-large",
|
model=EMBEDDING_MODEL,
|
||||||
api_key="YOUR_API_KEY",
|
|
||||||
base_url="YourURL/v1",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def get_embedding_dim():
|
||||||
|
test_text = ["This is a test sentence."]
|
||||||
|
embedding = await embedding_func(test_text)
|
||||||
|
embedding_dim = embedding.shape[1]
|
||||||
|
print(f"{embedding_dim=}")
|
||||||
|
return embedding_dim
|
||||||
|
|
||||||
|
|
||||||
# Initialize RAG instance
|
# Initialize RAG instance
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=llm_model_func,
|
llm_model_func=llm_model_func,
|
||||||
embedding_func=EmbeddingFunc(
|
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||||
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||||
),
|
func=embedding_func),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# Data models
|
# Data models
|
||||||
|
|
||||||
|
|
||||||
class QueryRequest(BaseModel):
|
class QueryRequest(BaseModel):
|
||||||
query: str
|
query: str
|
||||||
mode: str = "hybrid"
|
mode: str = "hybrid"
|
||||||
|
only_need_context: bool = False
|
||||||
|
|
||||||
|
|
||||||
class InsertRequest(BaseModel):
|
class InsertRequest(BaseModel):
|
||||||
text: str
|
text: str
|
||||||
|
|
||||||
|
|
||||||
class InsertFileRequest(BaseModel):
|
|
||||||
file_path: str
|
|
||||||
|
|
||||||
|
|
||||||
class Response(BaseModel):
|
class Response(BaseModel):
|
||||||
status: str
|
status: str
|
||||||
data: Optional[str] = None
|
data: Optional[str] = None
|
||||||
@@ -89,7 +99,8 @@ async def query_endpoint(request: QueryRequest):
|
|||||||
try:
|
try:
|
||||||
loop = asyncio.get_event_loop()
|
loop = asyncio.get_event_loop()
|
||||||
result = await loop.run_in_executor(
|
result = await loop.run_in_executor(
|
||||||
None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
|
None, lambda: rag.query(request.query,
|
||||||
|
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
|
||||||
)
|
)
|
||||||
return Response(status="success", data=result)
|
return Response(status="success", data=result)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -107,30 +118,22 @@ async def insert_endpoint(request: InsertRequest):
|
|||||||
|
|
||||||
|
|
||||||
@app.post("/insert_file", response_model=Response)
|
@app.post("/insert_file", response_model=Response)
|
||||||
async def insert_file(request: InsertFileRequest):
|
async def insert_file(file: UploadFile = File(...)):
|
||||||
try:
|
try:
|
||||||
# Check if file exists
|
file_content = await file.read()
|
||||||
if not os.path.exists(request.file_path):
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=404, detail=f"File not found: {request.file_path}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Read file content
|
# Read file content
|
||||||
try:
|
try:
|
||||||
with open(request.file_path, "r", encoding="utf-8") as f:
|
content = file_content.decode("utf-8")
|
||||||
content = f.read()
|
|
||||||
except UnicodeDecodeError:
|
except UnicodeDecodeError:
|
||||||
# If UTF-8 decoding fails, try other encodings
|
# If UTF-8 decoding fails, try other encodings
|
||||||
with open(request.file_path, "r", encoding="gbk") as f:
|
content = file_content.decode("gbk")
|
||||||
content = f.read()
|
|
||||||
|
|
||||||
# Insert file content
|
# Insert file content
|
||||||
loop = asyncio.get_event_loop()
|
loop = asyncio.get_event_loop()
|
||||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||||
|
|
||||||
return Response(
|
return Response(
|
||||||
status="success",
|
status="success",
|
||||||
message=f"File content from {request.file_path} inserted successfully",
|
message=f"File content from {file.filename} inserted successfully",
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
@@ -1,22 +1,28 @@
|
|||||||
import networkx as nx
|
import networkx as nx
|
||||||
|
|
||||||
G = nx.read_graphml('./dickensTestEmbedcall/graph_chunk_entity_relation.graphml')
|
G = nx.read_graphml("./dickensTestEmbedcall/graph_chunk_entity_relation.graphml")
|
||||||
|
|
||||||
|
|
||||||
def get_all_edges_and_nodes(G):
|
def get_all_edges_and_nodes(G):
|
||||||
# Get all edges and their properties
|
# Get all edges and their properties
|
||||||
edges_with_properties = []
|
edges_with_properties = []
|
||||||
for u, v, data in G.edges(data=True):
|
for u, v, data in G.edges(data=True):
|
||||||
edges_with_properties.append({
|
edges_with_properties.append(
|
||||||
'start': u,
|
{
|
||||||
'end': v,
|
"start": u,
|
||||||
'label': data.get('label', ''), # Assuming 'label' is used for edge type
|
"end": v,
|
||||||
'properties': data,
|
"label": data.get(
|
||||||
'start_node_properties': G.nodes[u],
|
"label", ""
|
||||||
'end_node_properties': G.nodes[v]
|
), # Assuming 'label' is used for edge type
|
||||||
})
|
"properties": data,
|
||||||
|
"start_node_properties": G.nodes[u],
|
||||||
|
"end_node_properties": G.nodes[v],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
return edges_with_properties
|
return edges_with_properties
|
||||||
|
|
||||||
|
|
||||||
# Example usage
|
# Example usage
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Assume G is your NetworkX graph loaded from Neo4j
|
# Assume G is your NetworkX graph loaded from Neo4j
|
||||||
|
File diff suppressed because it is too large
Load Diff
@@ -1,17 +1,16 @@
|
|||||||
import asyncio
|
import asyncio
|
||||||
import html
|
|
||||||
import os
|
import os
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Any, Union, cast, Tuple, List, Dict
|
from typing import Any, Union, Tuple, List, Dict
|
||||||
import numpy as np
|
|
||||||
import inspect
|
import inspect
|
||||||
from lightrag.utils import load_json, logger, write_json
|
from lightrag.utils import logger
|
||||||
from ..base import (
|
from ..base import BaseGraphStorage
|
||||||
BaseGraphStorage
|
from neo4j import (
|
||||||
|
AsyncGraphDatabase,
|
||||||
|
exceptions as neo4jExceptions,
|
||||||
|
AsyncDriver,
|
||||||
|
AsyncManagedTransaction,
|
||||||
)
|
)
|
||||||
from neo4j import AsyncGraphDatabase,exceptions as neo4jExceptions,AsyncDriver,AsyncSession, AsyncManagedTransaction
|
|
||||||
|
|
||||||
from contextlib import asynccontextmanager
|
|
||||||
|
|
||||||
|
|
||||||
from tenacity import (
|
from tenacity import (
|
||||||
@@ -26,7 +25,7 @@ from tenacity import (
|
|||||||
class Neo4JStorage(BaseGraphStorage):
|
class Neo4JStorage(BaseGraphStorage):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load_nx_graph(file_name):
|
def load_nx_graph(file_name):
|
||||||
print ("no preloading of graph with neo4j in production")
|
print("no preloading of graph with neo4j in production")
|
||||||
|
|
||||||
def __init__(self, namespace, global_config):
|
def __init__(self, namespace, global_config):
|
||||||
super().__init__(namespace=namespace, global_config=global_config)
|
super().__init__(namespace=namespace, global_config=global_config)
|
||||||
@@ -35,7 +34,9 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
URI = os.environ["NEO4J_URI"]
|
URI = os.environ["NEO4J_URI"]
|
||||||
USERNAME = os.environ["NEO4J_USERNAME"]
|
USERNAME = os.environ["NEO4J_USERNAME"]
|
||||||
PASSWORD = os.environ["NEO4J_PASSWORD"]
|
PASSWORD = os.environ["NEO4J_PASSWORD"]
|
||||||
self._driver: AsyncDriver = AsyncGraphDatabase.driver(URI, auth=(USERNAME, PASSWORD))
|
self._driver: AsyncDriver = AsyncGraphDatabase.driver(
|
||||||
|
URI, auth=(USERNAME, PASSWORD)
|
||||||
|
)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
@@ -43,27 +44,25 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
"node2vec": self._node2vec_embed,
|
"node2vec": self._node2vec_embed,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
async def close(self):
|
async def close(self):
|
||||||
if self._driver:
|
if self._driver:
|
||||||
await self._driver.close()
|
await self._driver.close()
|
||||||
self._driver = None
|
self._driver = None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
async def __aexit__(self, exc_type, exc, tb):
|
async def __aexit__(self, exc_type, exc, tb):
|
||||||
if self._driver:
|
if self._driver:
|
||||||
await self._driver.close()
|
await self._driver.close()
|
||||||
|
|
||||||
async def index_done_callback(self):
|
async def index_done_callback(self):
|
||||||
print ("KG successfully indexed.")
|
print("KG successfully indexed.")
|
||||||
|
|
||||||
|
|
||||||
async def has_node(self, node_id: str) -> bool:
|
async def has_node(self, node_id: str) -> bool:
|
||||||
entity_name_label = node_id.strip('\"')
|
entity_name_label = node_id.strip('"')
|
||||||
|
|
||||||
async with self._driver.session() as session:
|
async with self._driver.session() as session:
|
||||||
query = f"MATCH (n:`{entity_name_label}`) RETURN count(n) > 0 AS node_exists"
|
query = (
|
||||||
|
f"MATCH (n:`{entity_name_label}`) RETURN count(n) > 0 AS node_exists"
|
||||||
|
)
|
||||||
result = await session.run(query)
|
result = await session.run(query)
|
||||||
single_result = await result.single()
|
single_result = await result.single()
|
||||||
logger.debug(
|
logger.debug(
|
||||||
@@ -72,8 +71,8 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
return single_result["node_exists"]
|
return single_result["node_exists"]
|
||||||
|
|
||||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||||
entity_name_label_source = source_node_id.strip('\"')
|
entity_name_label_source = source_node_id.strip('"')
|
||||||
entity_name_label_target = target_node_id.strip('\"')
|
entity_name_label_target = target_node_id.strip('"')
|
||||||
|
|
||||||
async with self._driver.session() as session:
|
async with self._driver.session() as session:
|
||||||
query = (
|
query = (
|
||||||
@@ -90,12 +89,9 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
def close(self):
|
def close(self):
|
||||||
self._driver.close()
|
self._driver.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
async def get_node(self, node_id: str) -> Union[dict, None]:
|
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||||||
async with self._driver.session() as session:
|
async with self._driver.session() as session:
|
||||||
entity_name_label = node_id.strip('\"')
|
entity_name_label = node_id.strip('"')
|
||||||
query = f"MATCH (n:`{entity_name_label}`) RETURN n"
|
query = f"MATCH (n:`{entity_name_label}`) RETURN n"
|
||||||
result = await session.run(query)
|
result = await session.run(query)
|
||||||
record = await result.single()
|
record = await result.single()
|
||||||
@@ -103,15 +99,13 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
node = record["n"]
|
node = record["n"]
|
||||||
node_dict = dict(node)
|
node_dict = dict(node)
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f'{inspect.currentframe().f_code.co_name}: query: {query}, result: {node_dict}'
|
f"{inspect.currentframe().f_code.co_name}: query: {query}, result: {node_dict}"
|
||||||
)
|
)
|
||||||
return node_dict
|
return node_dict
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
async def node_degree(self, node_id: str) -> int:
|
async def node_degree(self, node_id: str) -> int:
|
||||||
entity_name_label = node_id.strip('\"')
|
entity_name_label = node_id.strip('"')
|
||||||
|
|
||||||
async with self._driver.session() as session:
|
async with self._driver.session() as session:
|
||||||
query = f"""
|
query = f"""
|
||||||
@@ -123,16 +117,15 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
if record:
|
if record:
|
||||||
edge_count = record["totalEdgeCount"]
|
edge_count = record["totalEdgeCount"]
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}'
|
f"{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}"
|
||||||
)
|
)
|
||||||
return edge_count
|
return edge_count
|
||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||||
entity_name_label_source = src_id.strip('\"')
|
entity_name_label_source = src_id.strip('"')
|
||||||
entity_name_label_target = tgt_id.strip('\"')
|
entity_name_label_target = tgt_id.strip('"')
|
||||||
src_degree = await self.node_degree(entity_name_label_source)
|
src_degree = await self.node_degree(entity_name_label_source)
|
||||||
trg_degree = await self.node_degree(entity_name_label_target)
|
trg_degree = await self.node_degree(entity_name_label_target)
|
||||||
|
|
||||||
@@ -142,15 +135,15 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
degrees = int(src_degree) + int(trg_degree)
|
degrees = int(src_degree) + int(trg_degree)
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f'{inspect.currentframe().f_code.co_name}:query:src_Degree+trg_degree:result:{degrees}'
|
f"{inspect.currentframe().f_code.co_name}:query:src_Degree+trg_degree:result:{degrees}"
|
||||||
)
|
)
|
||||||
return degrees
|
return degrees
|
||||||
|
|
||||||
|
async def get_edge(
|
||||||
|
self, source_node_id: str, target_node_id: str
|
||||||
async def get_edge(self, source_node_id: str, target_node_id: str) -> Union[dict, None]:
|
) -> Union[dict, None]:
|
||||||
entity_name_label_source = source_node_id.strip('\"')
|
entity_name_label_source = source_node_id.strip('"')
|
||||||
entity_name_label_target = target_node_id.strip('\"')
|
entity_name_label_target = target_node_id.strip('"')
|
||||||
"""
|
"""
|
||||||
Find all edges between nodes of two given labels
|
Find all edges between nodes of two given labels
|
||||||
|
|
||||||
@@ -166,22 +159,24 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
MATCH (start:`{entity_name_label_source}`)-[r]->(end:`{entity_name_label_target}`)
|
MATCH (start:`{entity_name_label_source}`)-[r]->(end:`{entity_name_label_target}`)
|
||||||
RETURN properties(r) as edge_properties
|
RETURN properties(r) as edge_properties
|
||||||
LIMIT 1
|
LIMIT 1
|
||||||
""".format(entity_name_label_source=entity_name_label_source, entity_name_label_target=entity_name_label_target)
|
""".format(
|
||||||
|
entity_name_label_source=entity_name_label_source,
|
||||||
|
entity_name_label_target=entity_name_label_target,
|
||||||
|
)
|
||||||
|
|
||||||
result = await session.run(query)
|
result = await session.run(query)
|
||||||
record = await result.single()
|
record = await result.single()
|
||||||
if record:
|
if record:
|
||||||
result = dict(record["edge_properties"])
|
result = dict(record["edge_properties"])
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}'
|
f"{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}"
|
||||||
)
|
)
|
||||||
return result
|
return result
|
||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
async def get_node_edges(self, source_node_id: str) -> List[Tuple[str, str]]:
|
||||||
async def get_node_edges(self, source_node_id: str)-> List[Tuple[str, str]]:
|
node_label = source_node_id.strip('"')
|
||||||
node_label = source_node_id.strip('\"')
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Retrieves all edges (relationships) for a particular node identified by its label.
|
Retrieves all edges (relationships) for a particular node identified by its label.
|
||||||
@@ -194,22 +189,33 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
results = await session.run(query)
|
results = await session.run(query)
|
||||||
edges = []
|
edges = []
|
||||||
async for record in results:
|
async for record in results:
|
||||||
source_node = record['n']
|
source_node = record["n"]
|
||||||
connected_node = record['connected']
|
connected_node = record["connected"]
|
||||||
|
|
||||||
source_label = list(source_node.labels)[0] if source_node.labels else None
|
source_label = (
|
||||||
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
list(source_node.labels)[0] if source_node.labels else None
|
||||||
|
)
|
||||||
|
target_label = (
|
||||||
|
list(connected_node.labels)[0]
|
||||||
|
if connected_node and connected_node.labels
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
if source_label and target_label:
|
if source_label and target_label:
|
||||||
edges.append((source_label, target_label))
|
edges.append((source_label, target_label))
|
||||||
|
|
||||||
return edges
|
return edges
|
||||||
|
|
||||||
|
|
||||||
@retry(
|
@retry(
|
||||||
stop=stop_after_attempt(3),
|
stop=stop_after_attempt(3),
|
||||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||||
retry=retry_if_exception_type((neo4jExceptions.ServiceUnavailable, neo4jExceptions.TransientError, neo4jExceptions.WriteServiceUnavailable)),
|
retry=retry_if_exception_type(
|
||||||
|
(
|
||||||
|
neo4jExceptions.ServiceUnavailable,
|
||||||
|
neo4jExceptions.TransientError,
|
||||||
|
neo4jExceptions.WriteServiceUnavailable,
|
||||||
|
)
|
||||||
|
),
|
||||||
)
|
)
|
||||||
async def upsert_node(self, node_id: str, node_data: Dict[str, Any]):
|
async def upsert_node(self, node_id: str, node_data: Dict[str, Any]):
|
||||||
"""
|
"""
|
||||||
@@ -219,7 +225,7 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
node_id: The unique identifier for the node (used as label)
|
node_id: The unique identifier for the node (used as label)
|
||||||
node_data: Dictionary of node properties
|
node_data: Dictionary of node properties
|
||||||
"""
|
"""
|
||||||
label = node_id.strip('\"')
|
label = node_id.strip('"')
|
||||||
properties = node_data
|
properties = node_data
|
||||||
|
|
||||||
async def _do_upsert(tx: AsyncManagedTransaction):
|
async def _do_upsert(tx: AsyncManagedTransaction):
|
||||||
@@ -228,7 +234,9 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
SET n += $properties
|
SET n += $properties
|
||||||
"""
|
"""
|
||||||
await tx.run(query, properties=properties)
|
await tx.run(query, properties=properties)
|
||||||
logger.debug(f"Upserted node with label '{label}' and properties: {properties}")
|
logger.debug(
|
||||||
|
f"Upserted node with label '{label}' and properties: {properties}"
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
async with self._driver.session() as session:
|
async with self._driver.session() as session:
|
||||||
@@ -240,9 +248,17 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
@retry(
|
@retry(
|
||||||
stop=stop_after_attempt(3),
|
stop=stop_after_attempt(3),
|
||||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||||
retry=retry_if_exception_type((neo4jExceptions.ServiceUnavailable, neo4jExceptions.TransientError, neo4jExceptions.WriteServiceUnavailable)),
|
retry=retry_if_exception_type(
|
||||||
|
(
|
||||||
|
neo4jExceptions.ServiceUnavailable,
|
||||||
|
neo4jExceptions.TransientError,
|
||||||
|
neo4jExceptions.WriteServiceUnavailable,
|
||||||
)
|
)
|
||||||
async def upsert_edge(self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]):
|
),
|
||||||
|
)
|
||||||
|
async def upsert_edge(
|
||||||
|
self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Upsert an edge and its properties between two nodes identified by their labels.
|
Upsert an edge and its properties between two nodes identified by their labels.
|
||||||
|
|
||||||
@@ -251,8 +267,8 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
target_node_id (str): Label of the target node (used as identifier)
|
target_node_id (str): Label of the target node (used as identifier)
|
||||||
edge_data (dict): Dictionary of properties to set on the edge
|
edge_data (dict): Dictionary of properties to set on the edge
|
||||||
"""
|
"""
|
||||||
source_node_label = source_node_id.strip('\"')
|
source_node_label = source_node_id.strip('"')
|
||||||
target_node_label = target_node_id.strip('\"')
|
target_node_label = target_node_id.strip('"')
|
||||||
edge_properties = edge_data
|
edge_properties = edge_data
|
||||||
|
|
||||||
async def _do_upsert_edge(tx: AsyncManagedTransaction):
|
async def _do_upsert_edge(tx: AsyncManagedTransaction):
|
||||||
@@ -265,7 +281,9 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
RETURN r
|
RETURN r
|
||||||
"""
|
"""
|
||||||
await tx.run(query, properties=edge_properties)
|
await tx.run(query, properties=edge_properties)
|
||||||
logger.debug(f"Upserted edge from '{source_node_label}' to '{target_node_label}' with properties: {edge_properties}")
|
logger.debug(
|
||||||
|
f"Upserted edge from '{source_node_label}' to '{target_node_label}' with properties: {edge_properties}"
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
async with self._driver.session() as session:
|
async with self._driver.session() as session:
|
||||||
@@ -273,6 +291,6 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error during edge upsert: {str(e)}")
|
logger.error(f"Error during edge upsert: {str(e)}")
|
||||||
raise
|
raise
|
||||||
async def _node2vec_embed(self):
|
|
||||||
print ("Implemented but never called.")
|
|
||||||
|
|
||||||
|
async def _node2vec_embed(self):
|
||||||
|
print("Implemented but never called.")
|
||||||
|
@@ -1,6 +1,5 @@
|
|||||||
import asyncio
|
import asyncio
|
||||||
import os
|
import os
|
||||||
import importlib
|
|
||||||
from dataclasses import asdict, dataclass, field
|
from dataclasses import asdict, dataclass, field
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from functools import partial
|
from functools import partial
|
||||||
@@ -25,17 +24,14 @@ from .storage import (
|
|||||||
NetworkXStorage,
|
NetworkXStorage,
|
||||||
)
|
)
|
||||||
|
|
||||||
from .kg.neo4j_impl import (
|
from .kg.neo4j_impl import Neo4JStorage
|
||||||
Neo4JStorage
|
# future KG integrations
|
||||||
)
|
|
||||||
#future KG integrations
|
|
||||||
|
|
||||||
# from .kg.ArangoDB_impl import (
|
# from .kg.ArangoDB_impl import (
|
||||||
# GraphStorage as ArangoDBStorage
|
# GraphStorage as ArangoDBStorage
|
||||||
# )
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
from .utils import (
|
from .utils import (
|
||||||
EmbeddingFunc,
|
EmbeddingFunc,
|
||||||
compute_mdhash_id,
|
compute_mdhash_id,
|
||||||
@@ -56,16 +52,18 @@ from .base import (
|
|||||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||||
try:
|
try:
|
||||||
return asyncio.get_event_loop()
|
return asyncio.get_event_loop()
|
||||||
|
|
||||||
except RuntimeError:
|
except RuntimeError:
|
||||||
logger.info("Creating a new event loop in main thread.")
|
logger.info("Creating a new event loop in main thread.")
|
||||||
loop = asyncio.new_event_loop()
|
loop = asyncio.new_event_loop()
|
||||||
asyncio.set_event_loop(loop)
|
asyncio.set_event_loop(loop)
|
||||||
|
|
||||||
return loop
|
return loop
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class LightRAG:
|
class LightRAG:
|
||||||
|
|
||||||
working_dir: str = field(
|
working_dir: str = field(
|
||||||
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
||||||
)
|
)
|
||||||
@@ -75,8 +73,6 @@ class LightRAG:
|
|||||||
current_log_level = logger.level
|
current_log_level = logger.level
|
||||||
log_level: str = field(default=current_log_level)
|
log_level: str = field(default=current_log_level)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# text chunking
|
# text chunking
|
||||||
chunk_token_size: int = 1200
|
chunk_token_size: int = 1200
|
||||||
chunk_overlap_token_size: int = 100
|
chunk_overlap_token_size: int = 100
|
||||||
@@ -131,8 +127,10 @@ class LightRAG:
|
|||||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
|
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
|
||||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||||
|
|
||||||
#@TODO: should move all storage setup here to leverage initial start params attached to self.
|
# @TODO: should move all storage setup here to leverage initial start params attached to self.
|
||||||
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[self.kg]
|
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
|
||||||
|
self.kg
|
||||||
|
]
|
||||||
|
|
||||||
if not os.path.exists(self.working_dir):
|
if not os.path.exists(self.working_dir):
|
||||||
logger.info(f"Creating working directory {self.working_dir}")
|
logger.info(f"Creating working directory {self.working_dir}")
|
||||||
@@ -186,6 +184,7 @@ class LightRAG:
|
|||||||
**self.llm_model_kwargs,
|
**self.llm_model_kwargs,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
def _get_storage_class(self) -> Type[BaseGraphStorage]:
|
def _get_storage_class(self) -> Type[BaseGraphStorage]:
|
||||||
return {
|
return {
|
||||||
"Neo4JStorage": Neo4JStorage,
|
"Neo4JStorage": Neo4JStorage,
|
||||||
|
@@ -466,7 +466,6 @@ async def _build_local_query_context(
|
|||||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||||
query_param: QueryParam,
|
query_param: QueryParam,
|
||||||
):
|
):
|
||||||
|
|
||||||
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
||||||
|
|
||||||
if not len(results):
|
if not len(results):
|
||||||
@@ -483,7 +482,7 @@ async def _build_local_query_context(
|
|||||||
{**n, "entity_name": k["entity_name"], "rank": d}
|
{**n, "entity_name": k["entity_name"], "rank": d}
|
||||||
for k, n, d in zip(results, node_datas, node_degrees)
|
for k, n, d in zip(results, node_datas, node_degrees)
|
||||||
if n is not None
|
if n is not None
|
||||||
]#what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||||
use_text_units = await _find_most_related_text_unit_from_entities(
|
use_text_units = await _find_most_related_text_unit_from_entities(
|
||||||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||||
)
|
)
|
||||||
@@ -946,7 +945,6 @@ async def hybrid_query(
|
|||||||
query_param,
|
query_param,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if hl_keywords:
|
if hl_keywords:
|
||||||
high_level_context = await _build_global_query_context(
|
high_level_context = await _build_global_query_context(
|
||||||
hl_keywords,
|
hl_keywords,
|
||||||
@@ -957,7 +955,6 @@ async def hybrid_query(
|
|||||||
query_param,
|
query_param,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
context = combine_contexts(high_level_context, low_level_context)
|
context = combine_contexts(high_level_context, low_level_context)
|
||||||
|
|
||||||
if query_param.only_need_context:
|
if query_param.only_need_context:
|
||||||
@@ -1028,7 +1025,9 @@ def combine_contexts(high_level_context, low_level_context):
|
|||||||
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
||||||
|
|
||||||
# Combine and deduplicate the relationships
|
# Combine and deduplicate the relationships
|
||||||
combined_relationships = process_combine_contexts(hl_relationships, ll_relationships)
|
combined_relationships = process_combine_contexts(
|
||||||
|
hl_relationships, ll_relationships
|
||||||
|
)
|
||||||
|
|
||||||
# Combine and deduplicate the sources
|
# Combine and deduplicate the sources
|
||||||
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
||||||
@@ -1064,7 +1063,6 @@ async def naive_query(
|
|||||||
chunks_ids = [r["id"] for r in results]
|
chunks_ids = [r["id"] for r in results]
|
||||||
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
||||||
|
|
||||||
|
|
||||||
maybe_trun_chunks = truncate_list_by_token_size(
|
maybe_trun_chunks = truncate_list_by_token_size(
|
||||||
chunks,
|
chunks,
|
||||||
key=lambda x: x["content"],
|
key=lambda x: x["content"],
|
||||||
|
@@ -233,8 +233,7 @@ class NetworkXStorage(BaseGraphStorage):
|
|||||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||||
return await self._node_embed_algorithms[algorithm]()
|
return await self._node_embed_algorithms[algorithm]()
|
||||||
|
|
||||||
|
# @TODO: NOT USED
|
||||||
#@TODO: NOT USED
|
|
||||||
async def _node2vec_embed(self):
|
async def _node2vec_embed(self):
|
||||||
from graspologic import embed
|
from graspologic import embed
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@ import re
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
from hashlib import md5
|
from hashlib import md5
|
||||||
from typing import Any, Union,List
|
from typing import Any, Union, List
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -176,19 +176,20 @@ def truncate_list_by_token_size(list_data: list, key: callable, max_token_size:
|
|||||||
return list_data[:i]
|
return list_data[:i]
|
||||||
return list_data
|
return list_data
|
||||||
|
|
||||||
|
|
||||||
def list_of_list_to_csv(data: List[List[str]]) -> str:
|
def list_of_list_to_csv(data: List[List[str]]) -> str:
|
||||||
output = io.StringIO()
|
output = io.StringIO()
|
||||||
writer = csv.writer(output)
|
writer = csv.writer(output)
|
||||||
writer.writerows(data)
|
writer.writerows(data)
|
||||||
return output.getvalue()
|
return output.getvalue()
|
||||||
|
|
||||||
|
|
||||||
def csv_string_to_list(csv_string: str) -> List[List[str]]:
|
def csv_string_to_list(csv_string: str) -> List[List[str]]:
|
||||||
output = io.StringIO(csv_string)
|
output = io.StringIO(csv_string)
|
||||||
reader = csv.reader(output)
|
reader = csv.reader(output)
|
||||||
return [row for row in reader]
|
return [row for row in reader]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def save_data_to_file(data, file_name):
|
def save_data_to_file(data, file_name):
|
||||||
with open(file_name, "w", encoding="utf-8") as f:
|
with open(file_name, "w", encoding="utf-8") as f:
|
||||||
json.dump(data, f, ensure_ascii=False, indent=4)
|
json.dump(data, f, ensure_ascii=False, indent=4)
|
||||||
@@ -253,13 +254,14 @@ def xml_to_json(xml_file):
|
|||||||
print(f"An error occurred: {e}")
|
print(f"An error occurred: {e}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def process_combine_contexts(hl, ll):
|
def process_combine_contexts(hl, ll):
|
||||||
header = None
|
header = None
|
||||||
list_hl = csv_string_to_list(hl.strip())
|
list_hl = csv_string_to_list(hl.strip())
|
||||||
list_ll = csv_string_to_list(ll.strip())
|
list_ll = csv_string_to_list(ll.strip())
|
||||||
|
|
||||||
if list_hl:
|
if list_hl:
|
||||||
header=list_hl[0]
|
header = list_hl[0]
|
||||||
list_hl = list_hl[1:]
|
list_hl = list_hl[1:]
|
||||||
if list_ll:
|
if list_ll:
|
||||||
header = list_ll[0]
|
header = list_ll[0]
|
||||||
@@ -268,13 +270,11 @@ def process_combine_contexts(hl, ll):
|
|||||||
return ""
|
return ""
|
||||||
|
|
||||||
if list_hl:
|
if list_hl:
|
||||||
list_hl = [','.join(item[1:]) for item in list_hl if item]
|
list_hl = [",".join(item[1:]) for item in list_hl if item]
|
||||||
if list_ll:
|
if list_ll:
|
||||||
list_ll = [','.join(item[1:]) for item in list_ll if item]
|
list_ll = [",".join(item[1:]) for item in list_ll if item]
|
||||||
|
|
||||||
combined_sources_set = set(
|
combined_sources_set = set(filter(None, list_hl + list_ll))
|
||||||
filter(None, list_hl + list_ll)
|
|
||||||
)
|
|
||||||
|
|
||||||
combined_sources = [",\t".join(header)]
|
combined_sources = [",\t".join(header)]
|
||||||
|
|
||||||
|
19
test.py
19
test.py
@@ -1,7 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||||
from pprint import pprint
|
|
||||||
#########
|
#########
|
||||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||||
# import nest_asyncio
|
# import nest_asyncio
|
||||||
@@ -15,7 +14,7 @@ if not os.path.exists(WORKING_DIR):
|
|||||||
|
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
|
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -23,13 +22,21 @@ with open("./book.txt") as f:
|
|||||||
rag.insert(f.read())
|
rag.insert(f.read())
|
||||||
|
|
||||||
# Perform naive search
|
# Perform naive search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||||
|
)
|
||||||
|
|
||||||
# Perform local search
|
# Perform local search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||||
|
)
|
||||||
|
|
||||||
# Perform global search
|
# Perform global search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||||
|
)
|
||||||
|
|
||||||
# Perform hybrid search
|
# Perform hybrid search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||||
|
)
|
||||||
|
@@ -18,7 +18,7 @@ rag = LightRAG(
|
|||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||||
kg="Neo4JStorage",
|
kg="Neo4JStorage",
|
||||||
log_level="INFO"
|
log_level="INFO",
|
||||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -26,13 +26,21 @@ with open("./book.txt") as f:
|
|||||||
rag.insert(f.read())
|
rag.insert(f.read())
|
||||||
|
|
||||||
# Perform naive search
|
# Perform naive search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||||
|
)
|
||||||
|
|
||||||
# Perform local search
|
# Perform local search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||||
|
)
|
||||||
|
|
||||||
# Perform global search
|
# Perform global search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||||
|
)
|
||||||
|
|
||||||
# Perform hybrid search
|
# Perform hybrid search
|
||||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
print(
|
||||||
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||||
|
)
|
||||||
|
Reference in New Issue
Block a user